Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 23(10): 663-679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760900

RESUMO

Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.


Assuntos
Plantas , Estresse Fisiológico , Hormônios/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781208

RESUMO

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Assuntos
Complexo I de Transporte de Elétrons , Proteínas Mitocondriais , Músculo Esquelético , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética
3.
Proc Natl Acad Sci U S A ; 120(31): e2305496120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494396

RESUMO

Cell-to-cell communication is fundamental to multicellular organisms and unicellular organisms living in a microbiome. It is thought to have evolved as a stress- or quorum-sensing mechanism in unicellular organisms. A unique cell-to-cell communication mechanism that uses reactive oxygen species (ROS) as a signal (termed the "ROS wave") was identified in flowering plants. This process is essential for systemic signaling and plant acclimation to stress and can spread from a small group of cells to the entire plant within minutes. Whether a similar signaling process is found in other organisms is however unknown. Here, we report that the ROS wave can be found in unicellular algae, amoeba, ferns, mosses, mammalian cells, and isolated hearts. We further show that this process can be triggered in unicellular and multicellular organisms by a local stress or H2O2 treatment and blocked by the application of catalase or NADPH oxidase inhibitors and that in unicellular algae it communicates important stress-response signals between cells. Taken together, our findings suggest that an active process of cell-to-cell ROS signaling, like the ROS wave, evolved before unicellular and multicellular organisms diverged. This mechanism could have communicated an environmental stress signal between cells and coordinated the acclimation response of many different cells living in a community. The finding of a signaling process, like the ROS wave, in mammalian cells further contributes to our understanding of different diseases and could impact the development of drugs that target for example cancer or heart disease.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Animais , Espécies Reativas de Oxigênio , Comunicação Celular , Plantas , Mamíferos
4.
Plant J ; 117(6): 1800-1814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37996968

RESUMO

The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.


Assuntos
Produtos Agrícolas , Ecossistema , Desenvolvimento Vegetal , Mudança Climática , Plântula , Estresse Fisiológico
5.
Plant J ; 117(6): 1656-1675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055844

RESUMO

With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Resposta ao Choque Térmico/genética , Estresse Fisiológico , Fotossíntese , Folhas de Planta/metabolismo
6.
Plant J ; 117(6): 1642-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315509

RESUMO

Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Aclimatação , Luz , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
7.
Plant J ; 117(6): 1728-1745, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050346

RESUMO

Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.


Assuntos
Ecossistema , Grão Comestível , Grão Comestível/genética , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética
8.
Plant Physiol ; 194(3): 1358-1369, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37847095

RESUMO

The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed "multifactorial stress combination" (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity.


Assuntos
Arabidopsis , Oryza , Oryza/genética , Zea mays/genética , Agricultura , Biomassa
9.
Plant Cell ; 34(8): 3047-3065, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35595231

RESUMO

Systemic acquired acclimation and wound signaling require the transmission of electrical, calcium, and reactive oxygen species (ROS) signals between local and systemic tissues of the same plant. However, whether such signals can be transmitted between two different plants is largely unknown. Here, we reveal a new type of plant-to-plant aboveground direct communication involving electrical signaling detected at the surface of leaves, ROS, and photosystem networks. A foliar electrical signal induced by wounding or high light stress applied to a single dandelion leaf can be transmitted to a neighboring plant that is in direct contact with the stimulated plant, resulting in systemic photosynthetic, oxidative, molecular, and physiological changes in both plants. Furthermore, similar aboveground changes can be induced in a network of plants serially connected via touch. Such signals can also induce responses even if the neighboring plant is from a different plant species. Our study demonstrates that electrical signals can function as a communication link between transmitter and receiver plants that are organized as a network (community) of plants. This process can be described as network-acquired acclimation.


Assuntos
Aclimatação , Plantas , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio , Transdução de Sinais/fisiologia
10.
Plant Cell ; 34(11): 4453-4471, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929088

RESUMO

Reactive oxygen species (ROS), produced by respiratory burst oxidase homologs (RBOHs) at the apoplast, play a key role in local and systemic cell-to-cell signaling, required for plant acclimation to stress. Here we reveal that the Arabidopsis thaliana leucine-rich-repeat receptor-like kinase H2O2-INDUCED CA2+ INCREASES 1 (HPCA1) acts as a central ROS receptor required for the propagation of cell-to-cell ROS signals, systemic signaling in response to different biotic and abiotic stresses, stress responses at the local and systemic tissues, and plant acclimation to stress, following a local treatment of high light (HL) stress. We further report that HPCA1 is required for systemic calcium signals, but not systemic membrane depolarization responses, and identify the calcium-permeable channel MECHANOSENSITIVE ION CHANNEL LIKE 3, CALCINEURIN B-LIKE CALCIUM SENSOR 4 (CBL4), CBL4-INTERACTING PROTEIN KINASE 26 and Sucrose-non-fermenting-1-related Protein Kinase 2.6/OPEN STOMATA 1 (OST1) as required for the propagation of cell-to-cell ROS signals. In addition, we identify serine residues S343 and S347 of RBOHD (the putative targets of OST1) as playing a key role in cell-to-cell ROS signaling in response to a local application of HL stress. Our findings reveal that HPCA1 plays a key role in mediating and coordinating systemic cell-to-cell ROS and calcium signals required for plant acclimation to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Arabidopsis/metabolismo , Aclimatação , Plantas/metabolismo , Canais de Cálcio/metabolismo , Transdução de Sinais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135884

RESUMO

Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron-sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron-sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT-VDAC1-mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.


Assuntos
Citosol/metabolismo , Compostos Ferrosos/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Simulação por Computador , Matriz Extracelular , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Neoplasias Experimentais , Consumo de Oxigênio , Canal de Ânion 1 Dependente de Voltagem/genética
12.
Plant J ; 116(4): 1064-1080, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37006191

RESUMO

Global warming and climate change are driving an alarming increase in the frequency and intensity of extreme climate events, such as droughts, heat waves, and their combination, inflicting heavy losses to agricultural production. Recent studies revealed that the transcriptomic responses of different crops to water deficit (WD) or heat stress (HS) are very different from that to a combination of WD + HS. In addition, it was found that the effects of WD, HS, and WD + HS are significantly more devastating when these stresses occur during the reproductive growth phase of crops, compared to vegetative growth. As the molecular responses of different reproductive and vegetative tissues of plants to WD, HS, or WD + HS could be different from each other and these differences could impact many current and future attempts to enhance the resilience of crops to climate change through breeding and/or engineering, we conducted a transcriptomic analysis of different soybean (Glycine max) tissues to WD, HS, and WD + HS. Here we present a reference transcriptomic dataset that includes the response of soybean leaf, pod, anther, stigma, ovary, and sepal to WD, HS, and WD + HS conditions. Mining this dataset for the expression pattern of different stress response transcripts revealed that each tissue had a unique transcriptomic response to each of the different stress conditions. This finding is important as it suggests that enhancing the overall resilience of crops to climate change could require a coordinated approach that simultaneously alters the expression of different groups of transcripts in different tissues in a stress-specific manner.


Assuntos
Transcriptoma , Água , Água/metabolismo , Glycine max/fisiologia , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Desidratação , Produtos Agrícolas/metabolismo , Secas , Estresse Fisiológico
13.
Plant Physiol ; 191(2): 862-873, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173336

RESUMO

Plants can send long-distance cell-to-cell signals from a single tissue subjected to stress to the entire plant. This ability is termed "systemic signaling" and is essential for plant acclimation to stress and/or defense against pathogens. Several signaling mechanisms are associated with systemic signaling, including the reactive oxygen species (ROS) wave, calcium wave, hydraulic wave, and electric signals. The ROS wave coordinates multiple physiological, molecular, and metabolic responses among different parts of the plant and is essential for systemic acquired acclimation (SAA) to stress. In addition, it is linked with several plant hormones, including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). However, how these plant hormones modulate the ROS wave and whether they are required for SAA is not clear. Here we report that SA and JA play antagonistic roles in modulating the ROS wave in Arabidopsis (Arabidopsis thaliana). While SA augments the ROS wave, JA suppresses it during responses to local wounding or high light (HL) stress treatments. We further show that ethylene and ABA are essential for regulation of the ROS wave during systemic responses to local wounding treatment. Interestingly, we found that the redox-response protein NONEXPRESSOR OF PATHOGENESIS RELATED PROTEIN 1 is required for systemic ROS accumulation in response to wounding or HL stress, as well as for SAA to HL stress. Taken together, our findings suggest that interplay between JA and SA might regulate systemic signaling and SAA during responses of plants to abiotic stress or wounding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo
14.
Plant Physiol ; 193(3): 2215-2231, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37534775

RESUMO

Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Plantas/metabolismo , Hipóxia , Regulação da Expressão Gênica de Plantas
15.
Plant Physiol ; 192(2): 753-766, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36810691

RESUMO

Climate change is causing an increase in the frequency and intensity of droughts, heat waves, and their combinations, diminishing agricultural productivity and destabilizing societies worldwide. We recently reported that during a combination of water deficit (WD) and heat stress (HS), stomata on leaves of soybean (Glycine max) plants are closed, while stomata on flowers are open. This unique stomatal response was accompanied by differential transpiration (higher in flowers, while lower in leaves) that cooled flowers during a combination of WD + HS. Here, we reveal that developing pods of soybean plants subjected to a combination of WD + HS use a similar acclimation strategy of differential transpiration to reduce internal pod temperature by approximately 4 °C. We further show that enhanced expression of transcripts involved in abscisic acid degradation accompanies this response and that preventing pod transpiration by sealing stomata causes a significant increase in internal pod temperature. Using an RNA-Seq analysis of pods developing on plants subjected to WD + HS, we also show that the response of pods to WD, HS, or WD + HS is distinct from that of leaves or flowers. Interestingly, we report that although the number of flowers, pods, and seeds per plant decreases under conditions of WD + HS, the seed mass of plants subjected to WD + HS increases compared to plants subjected to HS, and the number of seeds with suppressed/aborted development is lower in WD + HS compared to HS. Taken together, our findings reveal that differential transpiration occurs in pods of soybean plants subjected to WD + HS and that this process limits heat-induced damage to seed production.


Assuntos
Glycine max , Folhas de Planta , Glycine max/metabolismo , Folhas de Planta/metabolismo , Flores/genética , Flores/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Água/metabolismo , Desidratação/metabolismo , Transpiração Vegetal/fisiologia
16.
Plant Cell Environ ; 47(4): 1171-1184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164061

RESUMO

To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.


Assuntos
Ecossistema , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Plantas/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Mudança Climática
17.
Plant J ; 109(2): 373-389, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482588

RESUMO

Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.


Assuntos
Aclimatação , Mudança Climática , Produtos Agrícolas/fisiologia , Estresse Fisiológico , Agricultura , Secas , Microbiologia do Solo
18.
New Phytol ; 237(5): 1711-1727, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36401805

RESUMO

Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
19.
Plant Physiol ; 189(3): 1314-1325, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35348752

RESUMO

Mechanical wounding occurs in plants during biotic or abiotic stresses and is associated with the activation of long-distance signaling pathways that trigger wound responses in systemic tissues. Among the different systemic signals activated by wounding are electric signals, calcium, hydraulic, and reactive oxygen species (ROS) waves. The release of glutamate (Glu) from cells at the wounded tissues was recently proposed to trigger systemic signal transduction pathways via GLU-LIKE RECEPTORs (GLRs). However, the role of another important compound released from cells during wounding (extracellular ATP [eATP]) in triggering systemic responses is not clear. Here, we show in Arabidopsis (Arabidopsis thaliana) that wounding results in the accumulation of nanomolar levels of eATP and that these levels are sufficient to trigger the systemic ROS wave. We further show that the triggering of the ROS wave by eATP during wounding requires the PURINORECEPTOR 2 KINASE (P2K) receptor. Application of eATP to unwounded leaves triggered the ROS wave, and the activation of the ROS wave by wounding or eATP application was suppressed in mutants deficient in P2Ks (e.g. p2k1-3, p2k2, and p2k1-3p2k2). In addition, expression of systemic wound response (SWR) transcripts was suppressed in mutants deficient in P2Ks during wounding. Interestingly, the effect of Glu and eATP application on ROS wave activation was not additive, suggesting that these two compounds function in the same pathway to trigger the ROS wave. Our findings reveal that in addition to sensing Glu via GLRs, eATP sensed by P2Ks plays a key role in the triggering of SWRs in plants.


Assuntos
Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Plant Physiol ; 188(4): 2026-2038, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35078231

RESUMO

Plants are frequently subjected to different combinations of abiotic stresses, such as high light (HL) intensity, and elevated temperatures. These environmental conditions pose a threat to agriculture production, affecting photosynthesis, and decreasing yield. Metabolic responses of plants, such as alterations in carbohydrates and amino acid fluxes, play a key role in the successful acclimation of plants to different abiotic stresses, directing resources toward stress responses, and suppressing growth. Here we show that the primary metabolic response of Arabidopsis (Arabidopsis thaliana) plants to HL or heat stress (HS) is different from that of plants subjected to a combination of HL and HS (HL+HS). We further demonstrate that the combined stress results in a unique metabolic response that includes increased accumulation of sugars and amino acids coupled with decreased levels of metabolites participating in the tricarboxylic acid cycle. Among the amino acids exclusively accumulated during HL+HS, we identified the nonproteinogenic amino acid γ-aminobutyric acid (GABA). Analysis of different mutants deficient in GABA biosynthesis (GLUTAMATE DESCARBOXYLASE 3 [gad3]) as well as mutants impaired in autophagy (autophagy-related proteins 5 and 9 [atg5 and atg9]), revealed that GABA plays a key role in the acclimation of plants to HL+HS, potentially by promoting autophagy. Taken together, our findings identify a role for GABA in regulating plant responses to combined stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aclimatação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Estresse Fisiológico , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA