Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Langmuir ; 37(18): 5627-5634, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900779

RESUMO

Ultrathin nanoporous (NP) films are an emerging field for selective and effective ion/molecular separation and electrochemical sensing applications. We describe selective ion permeation in surface-functionalized ultrathin NP SiO2 films (NP SiO2-NH2). The ultrathin NP SiO2 films with ca. 8 nm thickness were prepared from silsesquioxane-containing blend polymer Langmuir-Blodgett films (nanosheets) using the photo-oxidation method. The porous SiO2 surface was modified with a pH-responsive amine-containing silane coupling agent. Selective ion permeation was demonstrated under acidic pH conditions (pH ≤ 6) using two equally sized redox probes: negative (Fe(CN)63-/4-) and positive (Ru(NH3)62+/3+) ions. The current density for Fe(CN)63-/4- decreased as the pH value increased to pH = 6, whereas it increased for Ru(NH3)62+/3+. Control measurements revealed that the probes can penetrate the pores of nonfunctionalized SiO2 films irrespective of pH values, indicating that both the size and the surface charge response contributed to selective ion permeation. Results obtained from this study pave the way for new applications in molecular separation and sensing applications based on ultrathin nanoporous films (<10 nm) and tailored surfaces.

2.
Langmuir ; 36(35): 10371-10378, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841566

RESUMO

This paper proposes a method of fabricating low-dimensional TiO2 nanofilms at room temperature under ambient pressure conditions. The titanium-containing polymer complex Ti-p(DDA/acac) was synthesized by reacting an amphiphilic copolymer (p(DDA/acac)) with a titanium complex. Its ultrathin films were prepared using the Langmuir-Blodgett (LB) technique. The monolayer was found to be free from hydrolysis and cross-linking side reactions, even at the air-water interface. The transferred LB films (nanosheets) were oxidized by ultraviolet irradiation at room temperature. The photo-oxidized material has an amorphous and porous structure with subnanometer-scale controllability (0.18 nm per layer). Photocatalytic performance was demonstrated by converting multilayered LB films of Ti-(DDA/acac) and the silicon-containing polymer p(DDA/SQ) into ultrathin hetero-multilayers of TiO2 and SiO2 under UV-O3 treatment. The scalability affords a uniform photopattern formation of photo-oxidized TiO2 films over several hundreds of micrometers.

3.
Langmuir ; 35(9): 3302-3307, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30744379

RESUMO

We report a biomimetic polyelectrolyte based on amphiphilic polymer nanosheet multilayer films. Copolymers of poly( N-dodecylacrylamide- co-vinylphosphonic acid) [p(DDA/VPA)] form a uniform monolayer at the air-water interface. By depositing such monolayers onto solid substrates using the Langmuir-Blodgett (LB) method, multilayer lamellae films with a structure similar to a bilayer membrane were fabricated. The proton conductivity at the hydrophilic interlayer of the lamellar multilayer films was studied by impedance spectroscopy under temperature- and humidity-controlled conditions. At 60 °C and 98% relative humidity (RH), the conductivity increased with increasing mole fraction of VPA ( n) up to 3.2 × 10-2 S cm-1 for n = 0.41. For a film with n = 0.45, the conductivity decreased to 2.2 × 10-2 S cm-1 despite the increase of proton sources. The reason for this decrease was evaluated by studying the effect of the distance between the VPAs ( lVPA) on the proton conductivity as well as their activation energy. We propose that for n = 0.41, lVPA is the optimal distance not only to form an efficient two-dimensional (2D) hydrogen bonding network but also to reorient water and VPA. For n = 0.45, on the other hand, the lVPA was too close for a reorientation. Therefore, we concluded that there should be an optimal distance to obtain high proton conductivity at the hydrophilic interlayer of such multilayer films.

4.
Langmuir ; 35(24): 8052-8059, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31185575

RESUMO

We describe a systematic approach for producing cellulose nanofiber (CNF) nanosheets using the Langmuir-Blodgett (LB) technique. The CNFs were obtained from sulfuric acid hydrolysis of commercially available microfibrillated cellulose. Needle-like CNFs, negatively charged by grafted sulfate groups, were maintained at the air-water interface, assisted by amphiphilic polymer, poly( N-dodecyl acrylamide) (pDDA). The CNFs produced a stable monolayer. The surface pressure increased steadily with a high collapse pressure of 50 mN m-1 when spread with formic acid and pDDA. The composite monolayers were transferred onto solid substrates as Y-type LB films using a vertical dipping method. Upstroke and downstroke transfer ratios of the films were, respectively, unity and 0.88, indicating that full coverage was achieved by the monolayer even for more than 200 layers. Results obtained using atomic force microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy showed that CNF nanosheets possess well-defined layer structures with average monolayer thickness of 5.3 nm. The relative amount of CNFs in the nanosheets was calculated as 62.6 wt % using the quartz crystal microbalance technique. The as-prepared nanosheets are optically transparent to visible light and have high hydrophobicity. In fact, the nanosheet transparency was higher than 88% at 600 nm wavelength for 24 layers. A miniscule amount of pDDA enables demonstration of free-standing CNF nanosheets with 1 cm width and 45.6 nm thickness (23 layers).

5.
Langmuir ; 34(36): 10491-10497, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146888

RESUMO

Precise integration of π-conjugated units is a key issue to achieve molecular (nano) electronic devices based on organic semiconductor materials. We specifically examine the Langmuir-Blodgett technique, which allows high-density integration of π-conjugated units. In this study, we designed a carbazole containing acrylamide-based homopolymer [poly(9-ethyl-3-carbazolyl acrylamide) (pCzAA)], in which the π-conjugated unit is connected with a hydrophilic amide unit directly as a side chain. Its Langmuir-Blodgett film formation properties were investigated. The pCzAA polymer took a stable monolayer formation in the presence of a small amount (ca. 10 mol %) of poly( N-dodecylacrylamide) (pDDA). Compared with amphiphilic carbazole-containing copolymers described in earlier reports, the direct connection of π-conjugated units through amide bonding enables the Cz content in monolayers to exceed that of the copolymer monolayers (ca. 30 mol %) dramatically. pCzAA:pDDA takes highly ordered layer structures toward the out-of-plane direction, although no structural order is formed in the in-plane direction. This method is a practical means to develop low-dimensional and high-density integration of π-conjugated units for molecular electronics.

6.
Langmuir ; 34(27): 8007-8014, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29939748

RESUMO

We describe the synthesis, Langmuir-Blodgett (LB) film formation, and photo-oxidation of an organic-inorganic hybrid block copolymer consisting of N-dodecyl acrylamide (DDA) and silsesquioxane (SQ) comonomers [p(DDA/SQ26)- b-pDDA]. The copolymer was synthesized by reversible addition fragmentation chain transfer polymerization of DDA and SQ. Higher monolayer stability at the air-water interface was confirmed for p(DDA/SQ26)- b-pDDA. The p(DDA/SQ26)- b-pDDA monolayer was deposited onto solid substrates with a monolayer thickness of 2.3 nm. The photo-oxidized SiO2 nanofilm revealed its porous structure, which reflects phase-separated structures of p(DDA/SQ26)- b-pDDA, as confirmed using atomic force microscopy, quartz crystal microbalance, and cyclic voltammetry measurements. These results demonstrate that this preparation method using photo-oxidation of the organic-inorganic hybrid block copolymer LB film is promising for manipulating pore formations of inorganic oxide nanofilms.

7.
Nanotechnology ; 29(26): 26LT02, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29708100

RESUMO

We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set-reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

8.
Langmuir ; 33(45): 12897-12902, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29058441

RESUMO

The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (lAA), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, lAA is too long to form such hydrogen bonding networks. The lAA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

9.
Langmuir ; 31(18): 5174-80, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879398

RESUMO

High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

10.
Soft Matter ; 11(10): 1962-72, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25622932

RESUMO

The present work addresses the solvent-dependent properties of Langmuir films of poly(vinylidene fluoride) (PVDF) and amphiphilic poly(N-dodecylacrylamide) (pDDA) at different mixing ratios. After introducing pDDA nanosheets, PVDF Langmuir films obtain a tremendously enhanced modulus as well as high transfer ratios using the vertical dipping method caused by the support of the pDDA two-dimensional hydrogen bonding network. Brewster angle microscopy (BAM) was used to investigate PVDF monolayers at the air-water interface in situ. Spreading from different solvents, the PVDF molecules take completely different aggregation states at the air-water interface. The PVDF molecules aggregate to become large domains when spread from N-methyl-2-pyrrolidone (NMP). However, the volatile and low-polarity methylethyl ketone (MEK) made the PVDF molecules more dispersive on the water surface. This study also discovers a versatile crystallization control of PVDF homopolymer from complete ß phase (NMP) to complete α phase (MEK) at the air-water interface, thereby eliciting useful information for further manipulation of film morphologies and film applications.

11.
J Am Chem Soc ; 136(3): 842-5, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24380502

RESUMO

Development of multicolored electrochromic materials is important to realize their applications in electronic devices such as full color electronic paper. One method to increase the number of colors in an electrochromic device is by color mixing. A simple method for color mixing involves two electrochromes deposited at different working electrodes. Selective control of the redox state of each electrochrome allows the generation of both the individual electrochrome colors and a mixture of the two colors. In this paper we report a new strategy that enables color mixing using a single working electrode. A trilayer film composed of an ultrathin layer of a ruthenium complex sandwiched between two layers of Prussian blue (PB) nanoparticles was prepared on an ITO electrode using the Langmuir-Blodgett technique. Cyclic voltammetry and spectroelectrochemistry of the films indicate that the redox state of PB located at the top and bottom layer can be independently controlled using a single working electrode. In this way a mixture of the colors of PB and Prussian yellow could be produced without the necessity for multiple electrodes.

13.
J Nanosci Nanotechnol ; 14(4): 3252-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734763

RESUMO

We describe the bottom-up design of highly ordered free-standing nanofilms consisting of polymer Langmuir-Blodgett films (polymer nanosheets). Polymer nanosheets enable the incorporation of a wide variety of functional groups such as reactive components and chromophores, which serve as building blocks of free-standing nanofilms. We demonstrated a free-standing fluorescent hybrid nanofilm in which the separation between gold nanoparticles and fluorophores was tuned at the nanometer scale. Moreover, we prepared a free-standing nanofilm consisting of a two-dimensional homogeneous nickel zinc iron oxide (NiZnFe22O4) nanoparticle monolayer assembled on polymer nanosheets.

14.
J Am Chem Soc ; 135(16): 6356-62, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23550804

RESUMO

This report describes a helicity-selective photoreaction of single-walled carbon nanotubes (SWNTs) with disulfide in the presence of oxygen. The SWNTs were characterized using absorption, photoluminescence (PL), Raman, and X-ray photoelectron spectroscopy, scanning electron microscopy, and current-voltage (I-V) measurements. Results showed remarkable helicity-selective (metallic SWNTs/semiconducting SWNTs and diameter) functionalization of SWNTs. The reaction rate decreases in the order of metallic SWNTs > semiconducting SWNTs and small-diameter SWNTs > large-diameter SWNTs. Control experiments conducted under various experimental conditions and ESR and femtosecond laser flash photolysis measurements revealed that the helicity-selective reaction proceeds via a photoinduced electron transfer reaction. The PL and I-V measurements showed that the photoreaction is effective not only to control SWNT conductivity but also for the band gap modulation of semiconducting SWNTs.


Assuntos
Nanotubos de Carbono/química , Oxigênio/química , Compostos de Enxofre/química , Dissulfetos , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Lasers , Luminescência , Microscopia Eletrônica de Varredura , Fotoquímica , Espectroscopia Fotoeletrônica , Fotólise , Semicondutores , Análise Espectral Raman
15.
Langmuir ; 29(23): 6798-804, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23721500

RESUMO

Proton transport properties of a partially protonated poly(aspartic acid)/sodium polyaspartate (P-Asp) were investigated. A remarkable enhancement of proton conductivity has been achieved in the thin film. Proton conductivity of 60-nm-thick thin film prepared on MgO(100) substrate was 3.4 × 10(-3) S cm(-1) at 298 K. The electrical conductivity of the oriented thin film was 1 order of magnitude higher than the bulk specimen, and the activation energies for the proton conductivity were 0.34 eV for the oriented thin film and 0.65 eV for the pelletized sample, respectively. This enhancement of the proton transport is attributable to the highly oriented structure on MgO(100) substrate. This result proposes great potential for a new strategy to produce a highly proton-conductive material using the concept of an oriented thin film structure without strong acid groups.


Assuntos
Peptídeos/química , Prótons , Estrutura Molecular , Peptídeos/síntese química
16.
Langmuir ; 28(5): 2313-7, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22260265

RESUMO

We present spontaneous emission control of a core-shell CdSe/ZnS nanoparticle array assembled with polymer ultrathin films consisting of polymer nanosheets on a silver grating substrate, which served as a unique and simple photonic cavity. The grating-coupled waveguide modes enabled 10(3) order luminescence enhancement and one-fourth spectral narrowing. The light emission from a CdSe/ZnS nanoparticle array can be controlled by tuning the film thickness of hybrid polymer nanoassemblies, which provides multiple emission performance with good tuning ability from red to green at low-power continuous wave laser excitation (∼µW).


Assuntos
Compostos de Cádmio/química , Membranas Artificiais , Nanoestruturas/química , Polímeros/química , Compostos de Selênio/química , Prata/química , Sulfetos/química , Compostos de Zinco/química , Propriedades de Superfície
17.
Langmuir ; 27(10): 6381-8, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21491866

RESUMO

"Core-corona" type amphiphiles, which comprise double-decker-shaped POSSs (DDSQs) as the core and two or four di(ethylene glycol) (DEG) units as the coronae, have recently been reported to form a stable monolayer at the air-water interface. In this paper, another core-corona amphiphile, 2DEGNH-DDSQ, which has a urethane group at the end of the coronae, was synthesized to elucidate the effects of hydrogen bonding on monolayer properties. The surface pressure-area isotherm and Brewster angle microscopy revealed that 2DEGNH-DDSQ initially formed rodlike assemblies. They subsequently coalescence to form a uniform monolayer with compression. Actually, 2DEGNH-DDSQs are well ordered in the rodlike assembly because of the strong hydrogen bonds among the urethane groups, as confirmed by FT-IR spectra. Although the monolayer was not transferred onto a solid substrate, mixing of 2DEGNH-DDSQ with 2DEG-DDSQ, which has already been reported to form a liquidlike monolayer, overcame this problem. The 1:1 molar mixture of 2DEGNH-DDSQ and 2DEG-DDSQ forms a uniform liquidlike monolayer. The mixed monolayer was transferred onto a solid substrate as a Z-type Langmuir-Blodgett film. Atomic force microscopic (AFM) images of the mixed-bilayer film showed a uniform surface with root-mean-square surface roughness of 0.21 nm. The intermolecular hydrogen bonds between the urethane groups in 2DEGNH-DDSQ and the hydroxyl groups in 2DEG-DDSQ improve the monolayer properties, which enable successful transfer of the LB film.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Compostos de Organossilício/química , Ar , Etilenoglicóis/química , Ligação de Hidrogênio , Polímeros/química , Água/química
18.
Langmuir ; 26(19): 15117-20, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20822112

RESUMO

Plasmon-enhanced luminescence was developed for luminescent oxygen sensor application. Luminescent polymer Langmuir-Blodgett films containing platinum-porphyrin were assembled plane-to-plane with a silver nanoparticle array. The hybrid polymer nanoassemblies allow more than 10-fold luminescence enhancement in air. The luminescence intensity and lifetime measurements as functions of the number of layers revealed that some platinum-porphyrin, which is close to silver nanoparticles, is effectively enhanced. The enhancement enables us to monitor 2D oxygen distribution mapping on the micrometer scale.

19.
Turk J Chem ; 44(2): 296-308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488158

RESUMO

Silsesquioxane-based transition-metal complexes have come to the forefront due to the ability of silsesquioxane to control nanostructures and properties. However, some difficulties in complete complexation and purification limit the widespread use of transition-metal-based supramolecular coordination complexes comprising silsesquioxane. Herein, 2 different approaches have been proposed for the synthesis of metallo-supramolecular materials on the basis of ruthenium(II)-terpyridine functional double-layer silsesquioxane (DDSQ) (Tpy/Ru-DDSQ) (Routes 1 and 2). In Route 1, complexation was followed by functionalization of DDSQ with the ligand, whereas in Route 2, complexation was performed before the ligand was inserted into the DDSQ. Tpy/Ru-DDSQ obtained from both approaches was characterized by 1H NMR, X-ray photoelectron spectrometer, and FTIR and found in the same structure. Both methods were fully discussed and their merits were explored. The complexation yield of the routes was similar. However, the results based on NMR and UV-Vis spectroscopy demonstrated that the incorporation rate of DDSQ into the complex was quite high in Route 2. As far as is known, this is the first study based on the effects of complexing Tpy ligands before/after binding to the target compound, particularly to silsesquioxane-based materials.

20.
J Am Chem Soc ; 131(12): 4418-24, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19275159

RESUMO

Flexible design of hybrid polymer nanoassemblies consisting of nonlinear optical (NLO) polymer nanosheets and gold nanoparticle alignment was done to elucidate near-field effects of localized surface plasmon (LSP) coupling, which was generated from coupled gold nanoparticles, on enhanced second harmonic generation (SHG) from nonlinear optical (NLO) dyes in hybrid nanoassemblies. Structurally well-defined hybrid polymer nanoassemblies comprising NLO polymer nanosheets and aligned gold nanoparticles were fabricated using bottom-up approaches: Langmuir-Blodgett (LB) technique and nanoparticle adsorption. Two hybrid polymer nanoassembled structures were particularly examined: a single-layer NLO polymer nanosheet and gold nanoparticle monolayer (single-layer structure) exhibiting intralayer LSP coupling, and a single-layer NLO polymer nanosheet sandwiched between two-layer gold nanoparticle monolayers (sandwich structure). The latter enables interlayer LSP coupling between the two gold nanoparticle monolayers. Dependence of SHG intensity on the distance between the NLO layer and nanoparticle layer was examined according to the LB layer structure and gold nanoparticle size variation. The SH light intensity from the NLO polymer nanosheet decreased almost exponentially with increasing spacer distance between the NLO polymer nanosheet and gold nanoparticle monolayer in both single-layer and sandwich structures. The decay length depends strongly on the gold nanoparticle size, indicating effective spatial distance for enhanced SHG from NLO polymer nanosheets. Theoretical calculations were used to study the enhancement mechanism. Finite difference time domain (FDTD) calculations reproduced the exponential behavior of SH light intensity as a function of separation distance, which confirmed the importance of coupled gold nanoparticle formation and parallel geometry of near-field coupling of the coupled gold nanoparticles with NLO polymer nanosheets for efficient SHG enhancement. Dipole-type LSP coupling along the long axis of adjacent gold nanoparticles at the fundamental frequency dominates enhancement of SHG from NLO dyes oriented parallel to the long axis of LSP coupling, which occurs at the center of the Au NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA