Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 214(2): 107842, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181457

RESUMO

In bifidobacteria, phosphoketolase (PKT) plays a key role in the central hexose fermentation pathway called "bifid shunt." The three-dimensional structure of PKT from Bifidobacterium longum with co-enzyme thiamine diphosphate (ThDpp) was determined at 2.1 Å resolution by cryo-EM single-particle analysis using 196,147 particles to build up the structural model of a PKT octamer related by D4 symmetry. Although the cryo-EM structure of PKT was almost identical to the X-ray crystal structure previously determined at 2.2 Å resolution, several interesting structural features were observed in the cryo-EM structure. Because this structure was solved at relatively high resolution, it was observed that several amino acid residues adopt multiple conformations. Among them, Q546-D547-H548-N549 (the QN-loop) demonstrate the largest structural change, which seems to be related to the enzymatic function of PKT. The QN-loop is at the entrance to the substrate binding pocket. The minor conformer of the QN-loop is similar to the conformation of the QN-loop in the crystal structure. The major conformer is located further from ThDpp than the minor conformer. Interestingly, the major conformer in the cryo-EM structure of PKT resembles the corresponding loop structure of substrate-bound Escherichia coli transketolase. That is, the minor and major conformers may correspond to "closed" and "open" states for substrate access, respectively. Moreover, because of the high-resolution analysis, many water molecules were observed in the cryo-EM structure of PKT. Structural features of the water molecules in the cryo-EM structure are discussed and compared with water molecules observed in the crystal structure.


Assuntos
Aldeído Liases/química , Bifidobacterium longum/enzimologia , Microscopia Crioeletrônica/métodos , Escherichia coli , Modelos Moleculares , Tiamina Pirofosfato , Água
2.
Subcell Biochem ; 96: 355-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252736

RESUMO

Thermostability is a key factor in the industrial and clinical application of enzymes, and understanding mechanisms of thermostability is valuable for molecular biology and enzyme engineering. In this chapter, we focus on the thermostability of leucine dehydrogenase (LDH, EC 1.4.1.9), an amino acid-metabolizing enzyme that is an NAD+-dependent oxidoreductase which catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH from Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has already been applied to quantify the concentration of BCAAs in biological specimens. However, the molecular mechanism of its thermostability had been unknown because no high-resolution structure was available. Here, we discuss the thermostability of GstLDH on the basis of its structure determined by cryo-electron microscopy. Sequence comparison with other structurally characterized LDHs (from Lysinibacillus sphaericus and Sporosarcina psychrophila) indicated that non-conserved residues in GstLDH, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric stability through intermolecular interactions between protomers. Furthermore, NAD+ binding to GstLDH increased the thermostability of the enzyme as additional intermolecular interactions formed on cofactor binding. This knowledge is important for further applications and development of amino acid metabolizing enzymes in industrial and clinical fields.


Assuntos
Leucina Desidrogenase/química , Leucina Desidrogenase/metabolismo , Bacillaceae/enzimologia , Microscopia Crioeletrônica , Estabilidade Enzimática , Geobacillus stearothermophilus/enzimologia , Leucina Desidrogenase/ultraestrutura , Sporosarcina/enzimologia
3.
J Dairy Sci ; 103(9): 7801-7807, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684466

RESUMO

Recent studies have shown that several types of cheese contain kokumi γ-glutamyl dipeptides, and the kokumi tripeptide, γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly), is a component of various fermented foods. The quantification of γ-Glu-Val-Gly in various types of cheese was herein conducted by HPLC-tandem mass spectrometry followed by derivatization with 6-aminoquinoyl-N-hydroxysuccinimidyl-carbamate. The γ-Glu-Val-Gly concentrations were between 0.35 and 0.59 µg/g in cheese made from ewe milk, but were not detected in cheese made from cow milk. The amino acid sequences of major milk proteins showed that the ß-caseins of sheep had the Val-Gly sequence at the 9-10 position, whereas ß-caseins of cows contained a Pro-Gly sequence at the same position. The Val-Gly sequence was absent in other caseins of sheep and cattle. These results suggest that the different γ-Glu-Val-Gly concentrations present in cheese made from cow and ewe milk are due to differences in the amino acid sequences of caseins.


Assuntos
Bovinos , Queijo/análise , Cromatografia Líquida de Alta Pressão/veterinária , Oligopeptídeos/análise , Ovinos , Espectrometria de Massas em Tandem/veterinária , Animais , Carbamatos/análise , Caseínas/análise , Dipeptídeos/análise , Feminino , Leite/química , Especificidade da Espécie
4.
J Struct Biol ; 205(1): 11-21, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543982

RESUMO

Leucine dehydrogenase (LDH, EC 1.4.1.9) is a NAD+-dependent oxidoreductase that catalyzes the deamination of branched-chain l-amino acids (BCAAs). LDH of Geobacillus stearothermophilus (GstLDH) is a highly thermostable enzyme that has been applied for the quantification or production of BCAAs. Here the cryo-electron microscopy (cryo-EM) structures of apo and NAD+-bound LDH are reported at 3.0 and 3.2 Šresolution, respectively. On comparing the structures, the two overall structures are almost identical, but it was observed that the partial conformational change was triggered by the interaction between Ser147 and the nicotinamide moiety of NAD+. NAD+ binding also enhanced the strength of oligomerization interfaces formed by the core domains. Such additional interdomain interaction is in good agreement with our experimental results showing that the residual activity of NAD+-bound form was approximately three times higher than that of the apo form after incubation at 80 °C. In addition, sequence comparison of three structurally known LDHs indicated a set of candidates for site-directed mutagenesis to improve thermostability. Subsequent mutation analysis actually revealed that non-conserved residues, including Ala94, Tyr127, and the C-terminal region, are crucial for oligomeric thermostability.


Assuntos
Microscopia Crioeletrônica/métodos , Geobacillus stearothermophilus/enzimologia , Leucina Desidrogenase/química , NAD/química , Sequência de Aminoácidos , Sítios de Ligação , Estrutura Molecular , Mutagênese Sítio-Dirigida , Estabilidade Proteica
5.
Anal Biochem ; 570: 13-20, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30586560

RESUMO

l-Histidine analysis is essential in physiological research and clinical applications because l-histidine concentrations in biofluids are associated with various diseases. However, an enzymatic method for l-histidine quantitation has not yet been established. Here, we describe a novel l-histidine quantitation assay using a combination of histidine decarboxylase (HDC) and histamine dehydrogenase (HDH) enzymes. Wild-type HDC is unstable and completely lost its activity within 50 days of storage at 4 °C in solution. We rationally designed a HDC C57S mutant with markedly improved stability (storage at 4 °C for over 200 days) without altering the enzyme's substrate specificity. Together with HDH, the HDC C57S mutant was applied to quantify l-histidine concentrations in human plasma. The assay showed high precision (<2.0% inter-assay variation) and high accuracy (<5.8% deviation from the results of LC/MS).


Assuntos
Histidina Descarboxilase/metabolismo , Histidina/sangue , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Cromatografia Líquida de Alta Pressão , Histidina/metabolismo , Histidina Descarboxilase/genética , Humanos , Cinética , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Photobacterium/enzimologia , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
6.
Anal Biochem ; 587: 113447, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562850

RESUMO

Glycine analysis is important in research fields such as physiology and healthcare because the concentration of glycine in human plasma has been reported to change with various disorders. Glycine oxidase from Bacillus subtilis (GlyOX) is useful for quantitative analysis of glycine. However, GlyOX is not sufficiently stable for use in physiology-based research or clinical settings. In this report, site-directed mutagenesis was used to engineer a GlyOX mutant suitable for glycine analysis. The GlyOX triple-mutant (T42 A/C245 S/L301V) retained most of its enzymatic activity during storage for over a year at 4 °C. A colorimetric enzyme analysis protocol was established using the GlyOX triple-mutant to determine glycine concentrations in human plasma. The analysis showed high accuracy (-5.4 to 3.5% relative errors when compared with the results from an amino acid analyzer, and 96.0-98.7% recoveries) and high precision (<4% between-run variation). Sample pretreatments of deproteinization and derivatization were not required. Therefore, this novel enzymatic analysis offers an effective and useful method for determining glycine concentrations in physiology related research and the healthcare field.


Assuntos
Aminoácido Oxirredutases/genética , Análise Química do Sangue , Colorimetria , Glicina/sangue , Aminoácido Oxirredutases/metabolismo , Engenharia Genética , Humanos , Mutação
7.
J Biomol NMR ; 71(3): 185-192, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29520682

RESUMO

G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl-13C1H3-labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of ß2-adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Receptores Adrenérgicos beta 2/química , Coloração e Rotulagem/métodos , Alanina , Animais , Baculoviridae , Deutério , Insetos/citologia , Insetos/virologia , Bicamadas Lipídicas , Micelas , Ligação Proteica , Conformação Proteica
8.
Proteomics ; 14(7-8): 810-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23818158

RESUMO

Imaging MS combined with CE/MS serves as a method to provide semi-quantitative and spatial information of small molecular metabolites in tissue slices. However, not all metabolites including amino acids have fully been visualized, because of low-ionization efficiency in MALDI MS. This study aimed to acquire semi-quantitative spatial information for multiple amino acids in frozen tissue slices. As a derivatization reagent, p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS) was applied to increase their ionization efficiency and detection sensitivity. Semi-quantitative MALDI-imaging MS allowed us to visualize and quantify free amino acid pools in human colon cancer xenografts using a model of liver metastases in super-immunodeficient NOD/scid/γ(null) mice (NOG mice). Because the m/z values of several TAHS-derivatized amino acids overlap with those of the 2,5-dihydroxybenzoic acid background and other endogenous compounds, we imaged them with tandem MS. The results indicated that regional contents of glutamate, glutamine, glycine, leucine/isoleucine/hydroxyproline, phenylalanine, and alanine were significantly elevated in metastatic tumors versus parenchyma of tumor-bearing livers. On-tissue TAHS derivatization thus serves as a useful method to detect alterations in many amino acid levels in vivo, thereby enabling understanding of the spatial alterations of these metabolites under varied disease conditions including cancer.


Assuntos
Aminoácidos/isolamento & purificação , Neoplasias do Colo/patologia , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aminoácidos/metabolismo , Animais , Neoplasias do Colo/metabolismo , Humanos , Camundongos , Metástase Neoplásica , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Anal Bioanal Chem ; 405(25): 8093-103, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23736350

RESUMO

Here, we describe a novel method for L-phenylalanine analysis using a sandwich-type immunometric assay approach for use as a new method for amino acid analysis. To overcome difficulties of the preparation of high-affinity and selectivity monoclonal antibodies against L-phenylalanine and the inability to use sandwich-type immunometric assays due to their small molecular weight, three procedures were examined. First, amino groups of L-phenylalanine were modified by "N-Fmoc-L-cysteine" (FC) residues and the derivative (FC-Phe) was used as a hapten. Immunization of mice with bovine serum albumin/FC-Phe conjugate successfully yielded specific monoclonal anti-FC-Phe antibodies. Second, a new derivatization reagent, "biotin linker conjugate of FC-Phe N-succinimidyl ester" (FC(Biotin)-NHS), was synthesized to convert L-phenylalanine to FC-(Biotin)-Phe as a hapten structure. The biotin moiety linked to the thiol group of cysteine formed a second binding site for streptavidin/horseradish peroxidase (HRP) conjugates for optical detection. Third, a new semi-sandwich-type immunometric assay was established using pre-derivatized L-phenylalanine, the monoclonal anti-FC-Phe antibody, and streptavidin/HRP conjugate (without second antibody). Using the new "semi-sandwich" immunometric assay system, a detection limit of 35 nM (60 amol per analysis) and a detection range of 0.1-20 µM were attained using a standard L-phenylalanine solution. Rat plasma samples were analyzed to test reliability. Intra-day assay precision was within 6% of the coefficient of variation; inter-day variation was 0.1%. The recovery rates were from 92.4 to 123.7%. This is the first report of the quantitative determination of L-phenylalanine using a reliable semi-sandwich immunometric assay approach and will be applicable to the quantitative determination of other amino acids.


Assuntos
Imunoensaio/métodos , Fenilalanina/sangue , Animais , Anticorpos Monoclonais/imunologia , Feminino , Haptenos/imunologia , Limite de Detecção , Camundongos , Camundongos Endogâmicos BALB C , Fenilalanina/imunologia , Ratos , Ratos Sprague-Dawley
10.
Enzyme Microb Technol ; 170: 110287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487431

RESUMO

L-glutamate oxidase (LGOX, EC: 1.4.3.11) is an oxidoreductase that catalyzes L-glutamate deamination. LGOX from Streptomyces sp. X-119-6 is used widely for L-glutamate quantification in research and industrial applications. This enzyme encoded as a single precursor chain that undergoes post-translational cleavage to four fragments by an endogenous protease to become highly active. Efficient preparation of active LGOX by heterologous expression without proteolysis process should be indispensable for wide application of this enzyme. Thus, developing an LGOX that requires no protease treatment should expand the potential applications of recombinant LGOX. In this report, we succeeded in obtaining an active single-chain LGOX by connecting the four fragments of the mature form with insertion of flexible linkers. The most active single-chain mutant showed the similar activity to that of the mature form from Streptomyces sp. X-119-6. The structure of this mutant was determined at 2.9 Å resolution by X-ray crystallography. It was revealed that this single-stranded mutant had the similar conformation to that of mature form. This single-chain LGOX can be produced efficiently and should expand LGOX applications.

11.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 290-303, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974963

RESUMO

Phosphoketolase and transketolase are thiamine diphosphate-dependent enzymes and play a central role in the primary metabolism of bifidobacteria: the bifid shunt. The enzymes both catalyze phosphorolytic cleavage of xylulose 5-phosphate or fructose 6-phosphate in the first reaction step, but possess different substrate specificity in the second reaction step, where phosphoketolase and transketolase utilize inorganic phosphate (Pi) and D-ribose 5-phosphate, respectively, as the acceptor substrate. Structures of Bifidobacterium longum phosphoketolase holoenzyme and its complex with a putative inhibitor, phosphoenolpyruvate, were determined at 2.5 Šresolution by serial femtosecond crystallography using an X-ray free-electron laser. In the complex structure, phosphoenolpyruvate was present at the entrance to the active-site pocket and plugged the channel to thiamine diphosphate. The phosphate-group position of phosphoenolpyruvate coincided well with those of xylulose 5-phosphate and fructose 6-phosphate in the structures of their complexes with transketolase. The most striking structural change was observed in a loop consisting of Gln546-Asp547-His548-Asn549 (the QN-loop) at the entrance to the active-site pocket. Contrary to the conformation of the QN-loop that partially covers the entrance to the active-site pocket (`closed form') in the known crystal structures, including the phosphoketolase holoenzyme and its complexes with reaction intermediates, the QN-loop in the current ambient structures showed a more compact conformation with a widened entrance to the active-site pocket (`open form'). In the phosphoketolase reaction, the `open form' QN-loop may play a role in providing the binding site for xylulose 5-phosphate or fructose 6-phosphate in the first step, and the `closed form' QN-loop may help confer specificity for Pi in the second step.


Assuntos
Bifidobacterium longum , Tiamina Pirofosfato , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Bifidobacterium longum/metabolismo , Cristalografia por Raios X , Transcetolase/química , Transcetolase/metabolismo , Fosfoenolpiruvato , Temperatura , Xilulose , Domínio Catalítico , Frutose
12.
Org Biomol Chem ; 10(11): 2318-25, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22297720

RESUMO

The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by ß-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.


Assuntos
DNA/química , Álcalis/química , Estrutura Molecular , Processos Fotoquímicos , Pirimidinonas/química
13.
J Biochem ; 171(1): 31-40, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34622278

RESUMO

Enzymatic amino acid assays are important in physiological research and clinical diagnostics because abnormal amino acid concentrations in biofluids are associated with various diseases. L-histidine decarboxylase from Photobacterium phosphoreum (PpHDC) is a pyridoxal 5'-phosphate-dependent enzyme and a candidate for use in an L-histidine quantitation assay. Previous cysteine substitution experiments demonstrated that the PpHDC C57S mutant displayed improved long-term storage stability and thermostability when compared with those of the wild-type enzyme. In this study, combinational mutation experiments of single cysteine substitution mutants of PpHDC were performed, revealing that the PpHDC C57S/C101V/C282V mutant possessed the highest thermostability. The stabilizing mechanism of these mutations was elucidated by solving the structures of PpHDC C57S and C57S/C101V/C282V mutants by X-ray crystallography. In the crystal structures, two symmetry-related PpHDC molecules form a domain-swapped homodimer. The side chain of S57 is solvent exposed in the structure, indicating that the C57S mutation eliminates chemical oxidation or disulfide bond formation with a free thiol group, thereby providing greater stability. Residues 101 and 282 form hydrophobic interactions with neighboring hydrophobic residues. Mutations C101V and C282V enhanced thermostability of PpHDC by filling a cavity present in the hydrophobic core (C101V) and increasing hydrophobic interactions.


Assuntos
Cisteína , Histidina Descarboxilase , Histidina/genética , Photobacterium
14.
Eur J Hum Genet ; 27(4): 621-630, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659259

RESUMO

To assess the use of plasma free amino acids (PFAAs) as biomarkers for metabolic disorders, it is essential to identify genetic factors that influence PFAA concentrations. PFAA concentrations were absolutely quantified by liquid chromatography-mass spectrometry using plasma samples from 1338 Japanese individuals, and genome-wide quantitative trait locus (QTL) analysis was performed for the concentrations of 21 PFAAs. We next conducted a conditional QTL analysis using the concentration of each PFAA adjusted by the other 20 PFAAs as covariates to elucidate genetic determinants that influence PFAA concentrations. We identified eight genes that showed a significant association with PFAA concentrations, of which two, SLC7A2 and PKD1L2, were identified. SLC7A2 was associated with the plasma levels of arginine and ornithine, and PKD1L2 with the level of glycine. The significant associations of these two genes were revealed in the conditional QTL analysis, but a significant association between serine and the CPS1 gene disappeared when glycine was used as a covariate. We demonstrated that conditional QTL analysis is useful for determining the metabolic pathways predominantly used for PFAA metabolism. Our findings will help elucidate the physiological roles of genetic components that control the metabolism of amino acids.


Assuntos
Aminoácidos/sangue , Biomarcadores/sangue , Estudo de Associação Genômica Ampla , Metabolômica , Adulto , Aminoácidos/genética , Feminino , Genoma Humano/genética , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
15.
Nat Commun ; 9(1): 194, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335412

RESUMO

The C-terminal region of G-protein-coupled receptors (GPCRs), stimulated by agonist binding, is phosphorylated by GPCR kinases, and the phosphorylated GPCRs bind to arrestin, leading to the cellular responses. To understand the mechanism underlying the formation of the phosphorylated GPCR-arrestin complex, we performed NMR analyses of the phosphorylated ß2-adrenoceptor (ß2AR) and the phosphorylated ß2AR-ß-arrestin 1 complex, in the lipid bilayers of nanodisc. Here we show that the phosphorylated C-terminal region adheres to either the intracellular side of the transmembrane region or lipids, and that the phosphorylation of the C-terminal region allosterically alters the conformation around M2155.54 and M2796.41, located on transemembrane helices 5 and 6, respectively. In addition, we found that the conformation induced by the phosphorylation is similar to that corresponding to the ß-arrestin-bound state. The phosphorylation-induced structures revealed in this study propose a conserved structural motif of GPCRs that enables ß-arrestin to recognize dozens of GPCRs.


Assuntos
Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Receptores Adrenérgicos beta 2/genética , beta-Arrestina 1/genética
16.
J Biochem ; 164(5): 359-367, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053101

RESUMO

l-Tryptophan oxidase, VioA from Chromobacterium violaceum, which has a high substrate specificity for tryptophan, is useful for quantitative assay of tryptophan. However, stability of wild type VioA is not enough for its application in clinical or industrial use. To improve the thermal stability of the enzyme, we developed a VioA (C395A) mutant, with higher stability than wild type VioA. The VioA (C395A) exhibited similar specificity and kinetic parameter for tryptophan to wild type. Conventionally, the quantity of tryptophan is determined by instrumental methods, such as high-performance liquid chromatography (HPLC) after pre-column-derivatization. Using the mutant enzyme, we succeeded in the tryptophan quantification in human plasma samples, to an accuracy of <2.9% when compared to the instrumental method, and to a precision of CV <3.2%. To analyse the improvement in storage stability and substrate specificity, we further determined the crystal structures of VioA (C395A) complexed with FAD, and with FAD and tryptophan at 1.8 Å resolution.


Assuntos
Engenharia de Proteínas , Temperatura , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo , Cromatografia Líquida de Alta Pressão , Chromobacterium/enzimologia , Estabilidade Enzimática , Conformação Proteica , Triptofano Oxigenase/genética
18.
J Agric Food Chem ; 55(3): 551-60, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17263440

RESUMO

A method for the comprehensive analysis of hydrophilic metabolites, based on a combination of high-performance liquid chromatography and mass spectrometry, is described. We evaluated three types of stationary phases to achieve the separation of highly hydrophilic metabolites. Good chromatographic retention and separation of these metabolites were achieved on a pentafluorophenylpropyl-bonded silica column with gradient elution, using 0.1% aqueous formic acid and acetonitrile as the mobile phase. The optimized conditions allowed the comprehensive determination of the standard 49 kinds of amino acids, 6 kinds of amines, 45 kinds of organic acids, 18 kinds of nucleic bases, 5 kinds of nucleosides, and 14 kinds of nucleotides, and then the linearity, dynamic range, detection limit, and precision of the retention time and the peak area were validated. We applied this method for the targeted analysis of the components in soy sauce. The results from the quantitative determination of amino acids were compared to those obtained with an amino acid analyzer, and the accuracy was in the range between 85 and 119%. The accuracy of other detected components was confirmed to be 105-133% by the recovery rate after the addition of standard compounds. We also applied the method for the nontargeted metabolic profiling of the components in several kinds of soy sauces with the principal component analysis. They were classified by the manufacturing methods, and the components that corresponded to the differences were identified. This method could be useful for the targeted analysis of hydrophilic metabolites as well as their nontargeted metabolic profiling.


Assuntos
Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Ácidos Nucleicos/análise , Aminas/análise , Ácidos Carboxílicos/análise , Nucleosídeos/análise , Nucleotídeos/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA