RESUMO
Since 2014, Atlantic salmon (Salmo salar L.) displaying clinical signs of red skin disease (RSD), including haemorrhagic and ulcerative skin lesions, have been repeatedly observed in Swedish rivers. Although the disease has since been reported in other countries, including Norway, Denmark, Ireland and the UK, no pathogen has so far been conclusively associated with RSD. In this study, the presence of 17 fish pathogens was investigated through qPCR in 18 returning Atlantic salmon with clinical signs of the disease in rivers in Sweden and Norway between 2019 and 2021. Several potential pathogens were repeatedly detected, including a protozoan (Ichthyobodo spp.), an oomycete (Saprolegnia spp.) and several bacteria (Yersinia ruckeri, Candidatus Branchiomonas cysticola, Aeromonas spp.). Cultivation on different media from ulcers and internal organs revealed high concentrations of rod-shaped bacteria typical of Aeromonadaceae. Multilocus phylogenetic analysis of different clones and single gene phylogenies of sequences obtained from the fish revealed concurrent isolation of several bacterial strains belonging to the species A. bestiarum, A. piscicola and A. sobria. While these bacterial infections may be secondary, these findings are significant for future studies on RSD and should guide the investigation of future outbreaks. However, the involvement of Aeromonas spp. as putative primary etiological agents of the disease cannot be ruled out and needs to be assessed by challenge experiments.
Assuntos
Aeromonas , Doenças dos Peixes , Salmo salar , Úlcera Cutânea , Animais , Aeromonas/genética , Filogenia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Úlcera Cutânea/veterináriaRESUMO
Candidatus Branchiomonas cysticola is an intracellular, gram-negative Betaproteobacteria causing epitheliocystis in Atlantic Salmon (Salmo salar L.). The bacterium has not been genetically characterized at the intraspecific level despite its high prevalence among salmon suffering from gill disease in Norwegian aquaculture. DNA from gill samples of Atlantic salmon PCR positive for Cand. B. cysticola and displaying pathological signs of gill disease, was, therefore, extracted and subject to next-generation sequencing (mNGS). Partial sequences of four housekeeping (HK) genes (aceE, lepA, rplB, rpoC) were ultimately identified from the sequenced material. Assays for real-time RT-PCR and fluorescence in-situ hybridization, targeting the newly acquired genes, were simultaneously applied with existing assays targeting the previously characterized 16S rRNA gene. Agreement in both expression and specificity between these putative HK genes and the 16S gene was observed in all instances, indicating that the partial sequences of these HK genes originate from Cand. B. cysticola. The knowledge generated from the present study constitutes a major prerequisite for the future design of novel genotyping schemes for this bacterium.
Assuntos
Infecções Bacterianas , Burkholderiales , Doenças dos Peixes , Salmo salar , Animais , Infecções Bacterianas/microbiologia , Burkholderiales/genética , Doenças dos Peixes/microbiologia , Genes Essenciais , Brânquias/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
The bacterium Pseudomonas anguilliseptica has in recent years emerged as a serious threat to production of lumpfish in Norway. Little is known about the population structure of this bacterium despite its association with disease in a wide range of different fish species throughout the world. The phylogenetic relationships between 53 isolates, primarily derived from diseased lumpfish, but including a number of reference strains from diverse geographical origins and fish species, were reconstructed by Multi-Locus Sequence Analysis (MLSA) using nine housekeeping genes (rpoB, atpD, gyrB, rpoD, ileS, aroE, carA, glnS and recA). MLSA revealed a high degree of relatedness between the studied isolates, altough the seven genotypes identified formed three main phylogenetic lineages. While four genotypes were identified amongst Norwegian lumpfish isolates, a single genotype dominated, irrespective of geographic origin. This suggests the existence of a dominant genotype associated with disease in production of lumpfish in Norwegian aquaculture. Elucidation of the population structure of the bacterium has provided valuable information for potential future vaccine development.