Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 188(4): 1167-1182, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30374676

RESUMO

We studied community-environment relationships of lake macrophytes at two metacommunity scales using data from 16 regions across the world. More specifically, we examined (a) whether the lake macrophyte communities respond similar to key local environmental factors, major climate variables and lake spatial locations in each of the regions (i.e., within-region approach) and (b) how well can explained variability in the community-environment relationships across multiple lake macrophyte metacommunities be accounted for by elevation range, spatial extent, latitude, longitude, and age of the oldest lake within each metacommunity (i.e., across-region approach). In the within-region approach, we employed partial redundancy analyses together with variation partitioning to investigate the relative importance of local variables, climate variables, and spatial location on lake macrophytes among the study regions. In the across-region approach, we used adjusted R2 values of the variation partitioning to model the community-environment relationships across multiple metacommunities using linear regression and commonality analysis. We found that niche filtering related to local lake-level environmental conditions was the dominant force structuring macrophytes within metacommunities. However, our results also revealed that elevation range associated with climate (increasing temperature amplitude affecting macrophytes) and spatial location (likely due to dispersal limitation) was important for macrophytes based on the findings of the across-metacommunities analysis. These findings suggest that different determinants influence macrophyte metacommunities within different regions, thus showing context dependency. Moreover, our study emphasized that the use of a single metacommunity scale gives incomplete information on the environmental features explaining variation in macrophyte communities.


Assuntos
Ecossistema , Lagos , Clima
2.
Toxins (Basel) ; 12(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272622

RESUMO

Meiktila Lake is a shallow reservoir located close to Meiktila city in central Myanmar. Its water is used for irrigation, domestic purposes and drinking water. No detailed study of the presence of cyanobacteria and their potential toxin production has been conducted so far. To ascertain the cyanobacterial composition and presence of cyanobacterial toxins in Meiktila Lake, water samples were collected in March and November 2017 and investigated for physico-chemical and biological parameters. Phytoplankton composition and biomass determination revealed that most of the samples were dominated by the cyanobacterium Raphidiopsis raciborskii. In a polyphasic approach, seven isolated cyanobacterial strains were classified morphologically and phylogenetically as R. raciborskii, and Microcystis spp. and tested for microcystins (MCs), cylindrospermopsins (CYNs), saxitoxins and anatoxins by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry (LC-MS). ELISA and LC-MS analyses confirmed CYNs in three of the five Raphidiopsis strains between 1.8 and 9.8 µg mg-1 fresh weight. Both Microcystis strains produced MCs, one strain 52 congeners and the other strain 20 congeners, including 22 previously unreported variants. Due to the presence of CYN- and MC-producing cyanobacteria, harmful effects on humans, domestic and wild animals cannot be excluded in Meiktila Lake.


Assuntos
Alcaloides/metabolismo , Cylindrospermopsis/metabolismo , Lagos/microbiologia , Microcistinas/metabolismo , Microcystis/metabolismo , Microbiologia da Água , Cromatografia Líquida , Toxinas de Cianobactérias , Cylindrospermopsis/genética , Monitoramento Ambiental , Ensaio de Imunoadsorção Enzimática , Microcystis/classificação , Microcystis/genética , Mianmar , Filogenia , Densidade Demográfica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
3.
Sci Total Environ ; 723: 138021, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213415

RESUMO

Documenting the patterns of biological diversity on Earth has always been a central challenge in macroecology and biogeography. However, for the diverse group of freshwater plants, such research program is still in its infancy. Here, we examined global variation in taxonomic, functional and phylogenetic beta diversity patterns of lake macrophytes using regional data from six continents. A data set of ca. 480 lake macrophyte community observations, together with climatic, geographical and environmental variables, was compiled across 16 regions worldwide. We (a) built the very first phylogeny comprising most freshwater plant lineages; (b) exploited a wide array of functional traits that are important to macrophyte autoecology or that relate to lake ecosystem functioning; (c) assessed if different large-scale beta diversity patterns show a clear latitudinal gradient from the equator to the poles using null models; and (d) employed evolutionary and regression models to first identify the degree to which the studied functional traits show a phylogenetic signal, and then to estimate community-environment relationships at multiple spatial scales. Our results supported the notion that ecological niches evolved independently of phylogeny in macrophyte lineages worldwide. We also showed that taxonomic and phylogenetic beta diversity followed the typical global trend with higher diversity in the tropics. In addition, we were able to confirm that species, multi-trait and lineage compositions were first and foremost structured by climatic conditions at relatively broad spatial scales. Perhaps more importantly, we showed that large-scale processes along latitudinal and elevational gradients have left a strong footprint in the current diversity patterns and community-environment relationships in lake macrophytes. Overall, our results stress the need for an integrative approach to macroecology, biogeography and conservation biology, combining multiple diversity facets at different spatial scales.


Assuntos
Ecossistema , Lagos , Biodiversidade , Filogenia , Plantas
4.
PLoS One ; 14(7): e0219700, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31299064

RESUMO

The ability to detect founding populations of invasive species or rare species with low number of individuals is important for aquatic ecosystem management. Traditional approaches use historical data, knowledge of the species' ecology and time-consuming surveys. Within the past decade, environmental DNA (eDNA) has emerged as a powerful additional tracking tool. While much work has been done with animals, comparatively very little has been done with aquatic plants. Here we investigated the transportation and seasonal changes in eDNA concentrations for an invasive aquatic species, Elodea canadensis, in Norway. A specific probe assay was developed using chloroplast DNA to study the fate of the targeted eDNA through space and time. The spatial study used a known source of Elodea canadensis within Lake Nordbytjern 400 m away from the lake outlet flowing into the stream Tveia. The rate of disappearance of E. canadensis eDNA was an order of magnitude loss over about 230 m in the lake and 1550 m in the stream. The time series study was performed monthly from May to October in lake Steinsfjorden harbouring E. canadensis, showing that eDNA concentrations varied by up to three orders of magnitude, peaking during fall. In both studies, the presence of suspended clay or turbidity for some samples did not hamper eDNA analysis. This study shows how efficient eDNA tools may be for tracking aquatic plants in the environment and provides key spatial and temporal information on the fate of eDNA.


Assuntos
DNA de Cloroplastos/análise , Monitoramento Ambiental/métodos , Hydrocharitaceae/genética , Espécies Introduzidas , DNA Ambiental , Ecossistema , Geografia , Lagos , Noruega , Rios , Estações do Ano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA