Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Biol ; 20(5)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279763

RESUMO

Dynamical graph grammars (DGGs) are capable of modeling and simulating the dynamics of the cortical microtubule array (CMA) in plant cells by using an exact simulation algorithm derived from a master equation; however, the exact method is slow for large systems. We present preliminary work on an approximate simulation algorithm that is compatible with the DGG formalism. The approximate simulation algorithm uses a spatial decomposition of the domain at the level of the system's time-evolution operator, to gain efficiency at the cost of some reactions firing out of order, which may introduce errors. The decomposition is more coarsely partitioned by effective dimension (d= 0 to 2 or 0 to 3), to promote exact parallelism between different subdomains within a dimension, where most computing will happen, and to confine errors to the interactions between adjacent subdomains of different effective dimensions. To demonstrate these principles we implement a prototype simulator, and run three simple experiments using a DGG for testing the viability of simulating the CMA. We find evidence indicating the initial formulation of the approximate algorithm is substantially faster than the exact algorithm, and one experiment leads to network formation in the long-time behavior, whereas another leads to a long-time behavior of local alignment.


Assuntos
Algoritmos , Simulação por Computador
2.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845085

RESUMO

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Assuntos
Biologia de Sistemas/métodos , Animais , Humanos , Modelos Logísticos , Modelos Biológicos , Software
3.
Bull Math Biol ; 81(8): 3385-3420, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175549

RESUMO

Declarative modeling uses symbolic expressions to represent models. With such expressions, one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a "meta-hierarchy" for organizing declarative models and the mathematical methods that can fruitfully manipulate them.


Assuntos
Modelos Biológicos , Algoritmos , Fenômenos Bioquímicos , Divisão Celular/fisiologia , Simulação por Computador , Citoesqueleto/fisiologia , Biologia do Desenvolvimento , Conceitos Matemáticos , Desenvolvimento Vegetal/fisiologia , Probabilidade , Linguagens de Programação , Semântica , Biologia de Sistemas
4.
J Chem Phys ; 149(3): 034107, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037235

RESUMO

Finding reduced models of spatially distributed chemical reaction networks requires an estimation of which effective dynamics are relevant. We propose a machine learning approach to this coarse graining problem, where a maximum entropy approximation is constructed that evolves slowly in time. The dynamical model governing the approximation is expressed as a functional, allowing a general treatment of spatial interactions. In contrast to typical machine learning approaches which estimate the interaction parameters of a graphical model, we derive Boltzmann-machine like learning algorithms to estimate directly the functionals dictating the time evolution of these parameters. By incorporating analytic solutions from simple reaction motifs, an efficient simulation method is demonstrated for systems ranging from toy problems to basic biologically relevant networks. The broadly applicable nature of our approach to learning spatial dynamics suggests promising applications to multiscale methods for spatial networks, as well as to further problems in machine learning.

5.
Proc Natl Acad Sci U S A ; 112(15): 4815-20, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825722

RESUMO

The stereotypic pattern of cell shapes in the Arabidopsis shoot apical meristem (SAM) suggests that strict rules govern the placement of new walls during cell division. When a cell in the SAM divides, a new wall is built that connects existing walls and divides the cytoplasm of the daughter cells. Because features that are determined by the placement of new walls such as cell size, shape, and number of neighbors are highly regular, rules must exist for maintaining such order. Here we present a quantitative model of these rules that incorporates different observed features of cell division. Each feature is incorporated into a "potential function" that contributes a single term to a total analog of potential energy. New cell walls are predicted to occur at locations where the potential function is minimized. Quantitative terms that represent the well-known historical rules of plant cell division, such as those given by Hofmeister, Errera, and Sachs are developed and evaluated against observed cell divisions in the epidermal layer (L1) of Arabidopsis thaliana SAM. The method is general enough to allow additional terms for nongeometric properties such as internal concentration gradients and mechanical tensile forces.


Assuntos
Arabidopsis/citologia , Meristema/citologia , Modelos Biológicos , Brotos de Planta/citologia , Algoritmos , Arabidopsis/metabolismo , Divisão Celular , Linhagem da Célula , Tamanho Celular , Parede Celular/metabolismo , Simulação por Computador , Meristema/metabolismo , Microscopia Confocal , Brotos de Planta/metabolismo , Imagem com Lapso de Tempo
6.
Bioinformatics ; 32(4): 629-31, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26504142

RESUMO

MOTIVATION: We introduce Pycellerator, a Python library for reading Cellerator arrow notation from standard text files, conversion to differential equations, generating stand-alone Python solvers, and optionally running and plotting the solutions. All of the original Cellerator arrows, which represent reactions ranging from mass action, Michales-Menten-Henri (MMH) and Gene-Regulation (GRN) to Monod-Wyman-Changeaux (MWC), user defined reactions and enzymatic expansions (KMech), were previously represented with the Mathematica extended character set. These are now typed as reaction-like commands in ASCII text files that are read by Pycellerator, which includes a Python command line interface (CLI), a Python application programming interface (API) and an iPython notebook interface. RESULTS: Cellerator reaction arrows are now input in text files. The arrows are parsed by Pycellerator and translated into differential equations in Python, and Python code is automatically generated to solve the system. Time courses are produced by executing the auto-generated Python code. Users have full freedom to modify the solver and utilize the complete set of standard Python tools. The new libraries are completely independent of the old Cellerator software and do not require Mathematica. AVAILABILITY AND IMPLEMENTATION: All software is available (GPL) from the github repository at https://github.com/biomathman/pycellerator/releases. Details, including installation instructions and a glossary of acronyms and terms, are given in the Supplementary information.


Assuntos
Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Software
7.
Phys Biol ; 12(4): 045005, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26086598

RESUMO

A stochastic reaction network model of Ca(2+) dynamics in synapses (Pepke et al PLoS Comput. Biol. 6 e1000675) is expressed and simulated using rule-based reaction modeling notation in dynamical grammars and in MCell. The model tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically intensive simulations is used to train a reduced model that, out of sample, correctly predicts the evolution of interaction parameters characterizing the instantaneous probability distribution over molecular states in the much larger fine-scale models. The novel model reduction method, 'graph-constrained correlation dynamics', requires a graph of plausible state variables and interactions as input. It parametrically optimizes a set of constant coefficients appearing in differential equations governing the time-varying interaction parameters that determine all correlations between variables in the reduced model at any time slice.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Cálcio/química , Calmodulina/química , Sinapses/enzimologia , Algoritmos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Cinética , Modelos Químicos , Modelos Neurológicos , Simulação de Dinâmica Molecular , Probabilidade
9.
Phys Biol ; 10(3): 035009, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23735739

RESUMO

The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.


Assuntos
Simulação por Computador , Modelos Biológicos , Processos Estocásticos , Biologia de Sistemas , Algoritmos , Teorema de Bayes , Cadeias de Markov
10.
J Chem Phys ; 138(10): 104111, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23514469

RESUMO

We study and analyze the stochastic dynamics of a reversible bimolecular reaction A + B ↔ C called the "trivalent reaction." This reaction is of a fundamental nature and is part of many biochemical reaction networks. The stochastic dynamics is given by the stochastic master equation, which is difficult to solve except when the equilibrium state solution is desired. We present a novel way of finding the eigenstates of this system of difference-differential equations, using perturbation analysis of ordinary differential equations arising from approximation of the difference equations. The time evolution of the state probabilities can then be expressed in terms of the eigenvalues and the eigenvectors.


Assuntos
Fenômenos Bioquímicos , Simulação por Computador , Modelos Biológicos , Cinética , Modelos Estatísticos , Processos Estocásticos
11.
In Silico Plants ; 5(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38938656

RESUMO

We present a method for learning 'spectrally descriptive' edge weights for graphs. We generalize a previously known distance measure on graphs (graph diffusion distance [GDD]), thereby allowing it to be tuned to minimize an arbitrary loss function. Because all steps involved in calculating this modified GDD are differentiable, we demonstrate that it is possible for a small neural network model to learn edge weights which minimize loss. We apply this method to discriminate between graphs constructed from shoot apical meristem images of two genotypes of Arabidopsis thaliana specimens: wild-type and trm678 triple mutants with cell division phenotype. Training edge weights and kernel parameters with contrastive loss produce a learned distance metric with large margins between these graph categories. We demonstrate this by showing improved performance of a simple k -nearest-neighbour classifier on the learned distance matrix. We also demonstrate a further application of this method to biological image analysis. Once trained, we use our model to compute the distance between the biological graphs and a set of graphs output by a cell division simulator. Comparing simulated cell division graphs to biological ones allows us to identify simulation parameter regimes which characterize mutant versus wild-type Arabidopsis cells. We find that trm678 mutant cells are characterized by increased randomness of division planes and decreased ability to avoid previous vertices between cell walls.

12.
J Chem Phys ; 137(21): 214104, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23231214

RESUMO

A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.


Assuntos
Algoritmos , Modelos Químicos , Cinética , Cadeias de Markov , Reprodutibilidade dos Testes , Processos Estocásticos
13.
Front Syst Biol ; 22022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36712785

RESUMO

Many emergent, non-fundamental models of complex systems can be described naturally by the temporal evolution of spatial structures with some nontrivial discretized topology, such as a graph with suitable parameter vectors labeling its vertices. For example, the cytoskeleton of a single cell, such as the cortical microtubule network in a plant cell or the actin filaments in a synapse, comprises many interconnected polymers whose topology is naturally graph-like and dynamic. The same can be said for cells connected dynamically in a developing tissue. There is a mathematical framework suitable for expressing such emergent dynamics, "stochastic parameterized graph grammars," composed of a collection of the graph- and parameter-altering rules, each of which has a time-evolution operator that suitably moves probability. These rule-level operators form an operator algebra, much like particle creation/annihilation operators or Lie group generators. Here, we present an explicit and constructive calculation, in terms of elementary basis operators and standard component notation, of what turns out to be a general combinatorial expression for the operator algebra that reduces products and, therefore, commutators of graph grammar rule operators to equivalent integer-weighted sums of such operators. We show how these results extend to "dynamical graph grammars," which include rules that bear local differential equation dynamics for some continuous-valued parameters. Commutators of such time-evolution operators have analytic uses, including deriving efficient simulation algorithms and approximations and estimating their errors. The resulting formalism is complementary to spatial models in the form of partial differential equations or stochastic reaction-diffusion processes. We discuss the potential application of this framework to the remodeling dynamics of the microtubule cytoskeleton in cortical microtubule networks relevant to plant development and of the actin cytoskeleton in, for example, a growing or shrinking synaptic spine head. Both cytoskeletal systems underlie biological morphodynamics.

14.
PLoS One ; 16(4): e0249624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905423

RESUMO

We define a new family of similarity and distance measures on graphs, and explore their theoretical properties in comparison to conventional distance metrics. These measures are defined by the solution(s) to an optimization problem which attempts find a map minimizing the discrepancy between two graph Laplacian exponential matrices, under norm-preserving and sparsity constraints. Variants of the distance metric are introduced to consider such optimized maps under sparsity constraints as well as fixed time-scaling between the two Laplacians. The objective function of this optimization is multimodal and has discontinuous slope, and is hence difficult for univariate optimizers to solve. We demonstrate a novel procedure for efficiently calculating these optima for two of our distance measure variants. We present numerical experiments demonstrating that (a) upper bounds of our distance metrics can be used to distinguish between lineages of related graphs; (b) our procedure is faster at finding the required optima, by as much as a factor of 103; and (c) the upper bounds satisfy the triangle inequality exactly under some assumptions and approximately under others. We also derive an upper bound for the distance between two graph products, in terms of the distance between the two pairs of factors. Additionally, we present several possible applications, including the construction of infinite "graph limits" by means of Cauchy sequences of graphs related to one another by our distance measure.


Assuntos
Algoritmos , Gráficos por Computador , Interpretação de Imagem Assistida por Computador/métodos , Difusão , Humanos
15.
Adv Exp Med Biol ; 680: 523-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20865537

RESUMO

MOTIVATION: Progress in systems biology depends on developing scalable informatics tools to predictively model, visualize, and flexibly store information about complex biological systems. Scalability of these tools, as well as their ability to integrate within larger frameworks of evolving tools, is critical to address the multi-scale and size complexity of biological systems. RESULTS: Using current software technology, such as self-generation of database and object code from UML schemas, facilitates rapid updating of a scalable expert assistance system for modeling biological pathways. Distribution of key components along with connectivity to external data sources and analysis tools is achieved via a web service interface. AVAILABILITY: All sigmoid modeling software components and supplementary information are available through: http://www.igb.uci.edu/servers/sb.html.


Assuntos
Sistemas Inteligentes , Modelos Biológicos , Biologia de Sistemas/estatística & dados numéricos , Biologia Computacional , Redes de Comunicação de Computadores , Simulação por Computador , Bases de Dados Factuais , Internet , Redes e Vias Metabólicas , Transdução de Sinais , Software , Interface Usuário-Computador
16.
Electron Notes Theor Comput Sci ; 265: 123-144, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21572536

RESUMO

Process modeling languages such as "Dynamical Grammars" are highly expressive in the processes they model using stochastic and deterministic dynamical systems, and can be given formal semantics in terms of an operator algebra. However such process languages may be more limited in the types of objects whose dynamics is easily expressible. For many applications in biology, the dynamics of spatial objects in particular (including combinations of discrete and continuous spatial structures) should be formalizable at a high level of abstraction. We suggest that this may be achieved by formalizing such objects within a type system endowed with type constructors suitable for complex dynamical objects. To this end we review and illustrate the operator algebraic formulation of heterogeneous process modeling and semantics, extending it to encompass partial differential equations and intrinsic graph grammar dynamics. We show that in the operator approach to heterogeneous dynamics, types require integration measures. From this starting point, "measurable" object types can be enriched with generalized metrics under which approximation can be defined. The resulting measurable and "metricated" types can be built up systematically by type constructors such as vectors, products, and labelled graphs. We find conditions under which functions and quotients can be added as constructors of measurable and metricated types.

17.
Nat Cell Biol ; 22(3): 310-320, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32144411

RESUMO

Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma , Animais , Neoplasias da Mama/metabolismo , Metabolismo Energético , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Metástase Neoplásica , Fosforilação Oxidativa , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
18.
J Chem Phys ; 130(14): 144110, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19368432

RESUMO

An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present "ER-leap" algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 23 power of the number of reaction events in a Galton-Watson process.


Assuntos
Algoritmos , Simulação por Computador , Modelos Químicos , Processos Estocásticos
19.
Methods Mol Biol ; 1945: 1-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945240

RESUMO

We present a tutorial on using Pycellerator for biomolecular simulations. Models are described in human readable (and editable) text files (UTF8 or ASCII) containing collections of reactions, assignments, initial conditions, function definitions, and rate constants. These models are then converted into a Python program that can optionally solve the system, e.g., as a system of differential equations using ODEINT, or be run by another program. The input language implements an extended version of the Cellerator arrow notation, including mass action, Hill functions, S-Systems, MWC, and reactions with user-defined kinetic laws. Simple flux balance analysis is also implemented. We will demonstrate the implementation and analysis of progressively more complex models, starting from simple mass action through indexed cascades. Pycellerator can be used as a library that is integrated into other programs, run as a command line program, or in iPython notebooks. It is implemented in Python 2.7 and available under an open source GPL license.


Assuntos
Simulação por Computador , Software , Biologia de Sistemas/métodos , Humanos , Cinética , Modelos Biológicos , Linguagens de Programação , Interface Usuário-Computador
20.
Nat Commun ; 10(1): 2360, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142740

RESUMO

Mechanical signals play many roles in cell and developmental biology. Several mechanotransduction pathways have been uncovered, but the mechanisms identified so far only address the perception of stress intensity. Mechanical stresses are tensorial in nature, and thus provide dual mechanical information: stress magnitude and direction. Here we propose a parsimonious mechanism for the perception of the principal stress direction. In vitro experiments show that microtubules are stabilized under tension. Based on these results, we explore the possibility that such microtubule stabilization operates in vivo, most notably in plant cells where turgor-driven tensile stresses exceed greatly those observed in animal cells.


Assuntos
Mecanotransdução Celular/fisiologia , Microtúbulos/fisiologia , Células Vegetais , Estresse Mecânico , Resistência à Tração/fisiologia , Parede Celular , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA