Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Care Explor ; 3(2): e0335, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604578

RESUMO

OBJECTIVES: The aim of this pilot study was to compare the amount of "mechanical power of ventilation" under adaptive support ventilation with nonautomated pressure-controlled ventilation. DESIGN: Single-center, observational prospective pilot study adjoining unitwide implementation of adaptive support ventilation in our department. SETTING: The ICU of a nonacademic teaching hospital in the Netherlands. PATIENTS: Twenty-four passive invasively ventilated critically ill patients expected to need of invasive ventilation beyond the following calendar day. MEASUREMENTS AND MAIN RESULTS: In patients under adaptive support ventilation, only positive end-expiratory pressure and Fio2 were set by the caregivers-all other ventilator settings were under control of the ventilator; in patients under pressure-controlled ventilation, maximum airway pressure (Pmax), positive end-expiratory pressure, Fio2, and respiratory rate were set by the caregivers. Mechanical power of ventilation was calculated three times per day. Compared with pressure-controlled ventilation, mechanical power of ventilation with adaptive support ventilation was lower (15.1 [10.5-25.7] vs 22.9 [18.7-28.8] J/min; p = 0.04). Tidal volume was not different, but Pmax (p = 0.012) and respiratory rate (p = 0.012) were lower with adaptive support ventilation. CONCLUSIONS: This study suggests adaptive support ventilation may have benefits compared with pressure-controlled ventilation with respect to the mechanical power of ventilation transferred from the ventilator to the respiratory system in passive invasively ventilated critically ill patients. The difference in mechanical power of ventilation is not a result of a difference in tidal volume, but the reduction in applied pressures and respiratory rate. The findings of this observational pilot study need to be confirmed in a larger, preferably randomized clinical trial.

2.
J Clin Med ; 10(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830691

RESUMO

Driving pressure (ΔP) and mechanical power (MP) are associated with outcomes in critically ill patients, irrespective of the presence of Acute Respiratory Distress Syndrome (ARDS). INTELLiVENT-ASV, a fully automated ventilatory mode, controls the settings that affect ΔP and MP. This study compared the intensity of ventilation (ΔP and MP) with INTELLiVENT-ASV versus conventional ventilation in a cohort of COVID-19 ARDS patients in two intensive care units in the Netherlands. The coprimary endpoints were ΔP and MP before and after converting from conventional ventilation to INTELLiVENT-ASV. Compared to conventional ventilation, INTELLiVENT-ASV delivered ventilation with a lower ΔP and less MP. With conventional ventilation, ΔP was 13 cmH2O, and MP was 21.5 and 24.8 J/min, whereas with INTELLiVENT-ASV, ΔP was 11 and 10 cmH2O (mean difference -2 cm H2O (95 %CI -2.5 to -1.2 cm H2O), p < 0.001) and MP was 18.8 and 17.5 J/min (mean difference -7.3 J/Min (95% CI -8.8 to -5.8 J/min), p < 0.001). Conversion from conventional ventilation to INTELLiVENT-ASV resulted in a lower intensity of ventilation. These findings may favor the use of INTELLiVENT-ASV in COVID-19 ARDS patients, but future studies remain needed to see if the reduction in the intensity of ventilation translates into clinical benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA