Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 89: 102564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364971

RESUMO

In terrestrial endotherms, evaporation is a significant mechanism of water loss in hot environments. Although water is passively lost by evaporation, individuals can regulate it at different levels. Inhabiting a relatively stable environment characterized by mild ambient temperature (Ta) and high humidity can ensure a balanced water budget. Many fossorial rodents are well adapted to live in such conditions. In this study, evaporative water loss (EWL) of fossorial rodent species with different degree of adaptations to underground life (from strictly subterranean to those with regular surface activity) was evaluated. By measuring EWL, the specific contribution of either evaporative or non-evaporative components of heat loss can be determined. With the exception of the silvery mole-rat (Heliophobius argenteocinereus), in all tested rodents EWL is relatively stable below and within the thermoneutral zone (TNZ). As Tas increase above TNZ, EWL increases as does total thermal conductance, but conductance increases several times more than EWL. In addition, non-evaporative routes seem to be more important than evaporative heat loss in the analyzed species. No clear pattern of EWL in relation to a species degree of fossoriality or sociality was detected. In this context, atmosphere of burrows could affect EWL, since the high humidity found inside tunnels can establish limits on evaporation to favor water rather than thermal balance.


Assuntos
Comportamento Animal , Regulação da Temperatura Corporal , Roedores/fisiologia , Comportamento Social , Perda Insensível de Água , Animais , Água Corporal/fisiologia
2.
Behav Processes ; 188: 104418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33971250

RESUMO

In animals, behavioural personality traits have been well-documented in a wide array of species. However, these traits, different between individuals, are not completely stable in individuals. They show behavioural plasticity like many other phenotypic traits. This plasticity is able to overcome some weak aspects of personality trait behavioural strategy. In the present study, we examined the relationship between motor personality traits and behavioural plasticity in the common vole (Microtus arvalis) using a PhenoTyper (PT) box (Noldus). During a three-day test, four behavioural motor activity parameters were monitored in 47 voles: distance moved, (loco)motion duration, motion change frequency, sprint duration. Consistency repeatability (RC) of the parameters from the PT test was very high, with all values ≥ 0.91. To select the best linear mixed-effect models (LMMs), several predictors (test day, sex, body weight) were tested. Only test day had a significant effect on the dependent variables and other predictors did not improve the LMMs. Further, we found significant effects of random intercepts (motor personality traits) and slopes (behavioural plasticity), as well as significant negative correlations between them for all behavioural parameters. Our results indicate that motor personality traits were connected with behavioural plasticity. Moreover, we revealed a significant positive correlation between the random slopes of (loco)motion duration and motion change frequency. This relationship could indicate some central plasticity of motor personality traits. In conclusion, negative correlations between the motor personality traits and the behavioural plasticity demonstrate expression of convergent tendency from both opposite trait values. This corresponds with different ideas on ability to compensate personality effects or to prepare for potential future conditions. In the laboratory, plasticity of personality traits take place whenever an animal is placed e. g. in a breeding box for the first time or is left for a long time in an experimental apparatus.


Assuntos
Arvicolinae , Comportamento Animal , Animais , Peso Corporal , Personalidade , Fenótipo
3.
Sci Rep ; 8(1): 4337, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531249

RESUMO

Mammals usually possess a majority of medium-wavelength sensitive (M-) and a minority of short-wavelength sensitive (S-) opsins in the retina, enabling dichromatic vision. Unexpectedly, subterranean rodents from the genus Fukomys exhibit an S-opsin majority, which is exceptional among mammals, albeit with no apparent adaptive value. Because thyroid hormones (THs) are pivotal for M-opsin expression and metabolic rate regulation, we have, for the first time, manipulated TH levels in the Ansell's mole-rat (Fukomys anselli) using osmotic pumps. In Ansell's mole-rats, the TH thyroxine (T4) is naturally low, likely as an adaptation to the harsh subterranean ecological conditions by keeping resting metabolic rate (RMR) low. We measured gene expression levels in the eye, RMR, and body mass (BM) in TH-treated animals. T4 treatment increased both, S- and M-opsin expression, albeit M-opsin expression at a higher degree. However, this plasticity was only given in animals up to approximately 2.5 years. Mass-specific RMR was not affected following T4 treatment, although BM decreased. Furthermore, the T4 inactivation rate is naturally higher in F. anselli compared to laboratory rodents. This is the first experimental evidence that the S-opsin majority in Ansell's mole-rats is a side effect of low T4, which is downregulated to keep RMR low.


Assuntos
Metabolismo Basal/efeitos dos fármacos , Opsinas dos Cones/metabolismo , Ratos-Toupeira/metabolismo , Retina/metabolismo , Tiroxina/sangue , Tiroxina/deficiência , Animais , Opsinas dos Cones/genética , Feminino , Masculino , Ratos-Toupeira/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA