Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 45(5): 1999-2008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518789

RESUMO

BACKGROUND/AIMS: Metabolic diseases are leading health concerns in today's global society. In traditional Chinese medicine (TCM), one body type studied is the phlegm-dampness constitution (PC), which predisposes individuals to complex metabolic disorders. Genomic studies have revealed the potential metabolic disorders and the molecular features of PC. The role of epigenetics in the regulation of PC, however, is unknown. METHODS: We analyzed a genome-wide DNA methylation in 12 volunteers using Illumina Infinium Human Methylation450 BeadChip on peripheral blood mononuclear cells (PBMCs). Eight volunteers had PC and 4 had balanced constitutions. RESULTS: Methylation data indicated a genome-scale hyper-methylation pattern in PC. We located 288 differentially methylated probes (DMPs). A total of 256 genes were mapped, and some of these were metabolic-related. SQSTM1, DLGAP2 and DAB1 indicated diabetes mellitus; HOXC4 and SMPD3, obesity; and GRWD1 and ATP10A, insulin resistance. According to Ingenuity Pathway Analysis (IPA), differentially methylated genes were abundant in multiple metabolic pathways. CONCLUSION: Our results suggest the potential risk for metabolic disorders in individuals with PC. We also explain the clinical characteristics of PC with DNA methylation features.


Assuntos
Metilação de DNA , Doenças Metabólicas/genética , Adenosina Trifosfatases/genética , Adulto , Proteínas de Transporte/genética , Ilhas de CpG , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Epigênese Genética , Feminino , Proteínas de Homeodomínio/genética , Humanos , Resistência à Insulina , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Doenças Metabólicas/patologia , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Obesidade/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Esfingomielina Fosfodiesterase/genética
2.
Natl Sci Rev ; 11(5): nwae150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803565

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.

3.
Cancer Cell ; 39(7): 958-972.e8, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34048709

RESUMO

N6-Methyladenosine (m6A) on mRNAs mediates different biological processes and its dysregulation contributes to tumorigenesis. How m6A dictates its diverse molecular and cellular effects in leukemias remains unknown. We found that YTHDC1 is the essential m6A reader in myeloid leukemia from a genome-wide CRISPR screen and that m6A is required for YTHDC1 to undergo liquid-liquid phase separation and form nuclear YTHDC1-m6A condensates (nYACs). The number of nYACs increases in acute myeloid leukemia (AML) cells compared with normal hematopoietic stem and progenitor cells. AML cells require the nYACs to maintain cell survival and the undifferentiated state that is critical for leukemia maintenance. Furthermore, nYACs enable YTHDC1 to protect m6A-mRNAs from the PAXT complex and exosome-associated RNA degradation. Collectively, m6A is required for the formation of a nuclear body mediated by phase separation that maintains mRNA stability and control cancer cell survival and differentiation.


Assuntos
Adenosina/análogos & derivados , Núcleo Celular/metabolismo , Metilação de DNA , Leucemia Mieloide Aguda/prevenção & controle , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Adenosina/química , Adenosina/metabolismo , Animais , Apoptose , Diferenciação Celular , Núcleo Celular/genética , Proliferação de Células , Feminino , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Extração Líquido-Líquido , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Transição de Fase , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Processamento de RNA/genética , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Res ; 28(2): 172-186, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29148541

RESUMO

Aggressive NK-cell leukemia (ANKL) is a rare form of NK cell neoplasm that is more prevalent among people from Asia and Central and South America. Patients usually die within days to months, even after receiving prompt therapeutic management. Here we performed the first comprehensive study of ANKL by integrating whole genome, transcriptome and targeted sequencing, cytokine array as well as functional assays. Mutations in the JAK-STAT pathway were identified in 48% (14/29) of ANKL patients, while the extracellular STAT3 stimulator IL10 was elevated by an average of 56-fold (P < 0.0001) in the plasma of all patients examined. Additional frequently mutated genes included TP53 (34%), TET2 (28%), CREBBP (21%) and MLL2 (21%). Patient NK leukemia cells showed prominent activation of STAT3 phosphorylation, MYC expression and transcriptional activities in multiple metabolic pathways. Functionally, STAT3 activation and MYC expression were critical for the proliferation and survival of ANKL cells. STAT signaling regulated the MYC transcription program, and both STAT signaling and MYC transcription were required to maintain the activation of nucleotide synthesis and glycolysis. Collectively, the JAK-STAT pathway represents a major target for genomic alterations and IL10 stimulation in ANKL. This newly discovered JAK/STAT-MYC-biosynthesis axis may provide opportunities for the development of novel therapeutic strategies in treating this subtype of leukemia.


Assuntos
Janus Quinases/genética , Leucemia Linfocítica Granular Grande/genética , Proteínas Proto-Oncogênicas c-myc/genética , Doenças Raras/genética , Fator de Transcrição STAT3/genética , Antígeno CD56/análise , Linhagem Celular Tumoral , Expressão Gênica , Perfilação da Expressão Gênica , Glicólise , Humanos , Interleucina-10/metabolismo , Janus Quinases/metabolismo , Células Matadoras Naturais , Leucemia Linfocítica Granular Grande/sangue , Leucemia Linfocítica Granular Grande/tratamento farmacológico , Terapia de Alvo Molecular , Mutação , Nucleotídeos/biossíntese , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Doenças Raras/sangue , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Estatísticas não Paramétricas , Transcriptoma/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA