Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(5): 2513-2518, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964830

RESUMO

During natural fertilization, mammalian spermatozoa must pass through the zona pellucida before reaching the plasma membrane of the oocyte. It is assumed that this step involves partial lysis of the zona by sperm acrosomal enzymes, but there has been no unequivocal evidence to support this view. Here we present evidence that acrosin, an acrosomal serine protease, plays an essential role in sperm penetration of the zona. We generated acrosin-knockout (KO) hamsters, using an in vivo transfection CRISPR/Cas9 system. Homozygous mutant males were completely sterile. Acrosin-KO spermatozoa ascended the female genital tract and reached ovulated oocytes in the oviduct ampulla, but never fertilized them. In vitro fertilization (IVF) experiments revealed that mutant spermatozoa attached to the zona, but failed to penetrate it. When the zona pellucida was removed before IVF, all oocytes were fertilized. This indicates that in hamsters, acrosin plays an indispensable role in allowing fertilizing spermatozoa to penetrate the zona. This study also suggests that the KO hamster system would be a useful model for identifying new gene functions or analyzing human and animal disorders because of its technical facility and reproducibility.


Assuntos
Acrosina/metabolismo , Cricetinae/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/enzimologia , Acrosina/genética , Acrossomo/metabolismo , Animais , Cricetinae/genética , Feminino , Fertilização in vitro , Técnicas de Inativação de Genes , Masculino , Espermatozoides/fisiologia , Zona Pelúcida/metabolismo
2.
Mamm Genome ; 33(1): 181-191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34532769

RESUMO

The RIKEN BioResource Research Center (BRC) was established in 2001 as a comprehensive biological resource center in Japan. The Experimental Animal Division, one of the BRC infrastructure divisions, has been designated as the core facility for mouse resources within the National BioResource Project (NBRP) by the Japanese government since FY2002. Our activities regarding the collection, preservation, quality control, and distribution of mouse resources have been supported by the research community, including evaluations and guidance on advancing social and research needs, as well as the operations and future direction of the BRC. Expenditure for collection, preservation, and quality-control operations of the BRC, as a national core facility, has been funded by the government, while distribution has been separately funded by users' reimbursement fees. We have collected over 9000 strains created mainly by Japanese scientists including Nobel laureates and researchers in cutting-edge fields and distributed mice to 7000 scientists with 1500 organizations in Japan and globally. Our users have published 1000 outstanding papers and a few dozen patents. The collected mouse resources are accessible via the RIKEN BRC website, with a revised version of the searchable online catalog. In addition, to enhance the visibility of useful strains, we have launched web corners designated as the "Mouse of the Month" and "Today's Tool and Model." Only high-demand strains are maintained in live colonies, while other strains are cryopreserved as embryos or sperm to achieve cost-effective management. Since 2007, the RIKEN BRC has built up a back-up facility in the RIKEN Harima branch to protect the deposited strains from disasters. Our mice have been distributed with high quality through the application of strict microbial and genetic quality control programs that cover a globally accepted pathogens list and mutated alleles generated by various methods. Added value features, such as information about users' publications, standardized phenotyping data, and genome sequences of the collected strains, are important to facilitate the use of our resources. We have added and disseminated such information in collaboration with the NBRP Information Center and the NBRP Genome Information Upgrading Program. The RIKEN BRC has participated in international mouse resource networks such as the International Mouse Strain Resource, International Mouse Phenotyping Consortium, and Asian Mouse Mutagenesis and Resource Association to facilitate the worldwide use of high-quality mouse resources, and as a consequence it contributes to reproducible life science studies and innovation around the globe.


Assuntos
Programas Governamentais , Centros de Informação , Camundongos , Animais , Genoma , Japão , Camundongos/genética
3.
Biol Reprod ; 107(2): 605-618, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35368067

RESUMO

The litter size of mouse strains is determined by the number of oocytes naturally ovulated. Many attempts have been made to increase litter sizes by conventional superovulation regimens (e.g., using equine or human gonadotropins, eCG/hCG but had limited success because of unexpected decreases in the numbers of embryos surviving to term. Here, we examined whether rat-derived anti-inhibin monoclonal antibodies (AIMAs) could be used for this purpose. When C57BL/6 female mice were treated with an AIMA and mated, the number of healthy offspring per mouse increased by 1.4-fold (11.9 vs. 8.6 in controls). By contrast, treatment with eCG/hCG or anti-inhibin serum resulted in fewer offspring than in nontreated controls. The overall efficiency of production based on all females treated (including nonpregnant ones) was improved 2.4 times with AIMA compared with nontreated controls. The AIMA treatment was also effective in ICR mice, increasing the litter size from 15.3 to 21.2 pups. We then applied this technique to an in vivo genome-editing method (improved genome-editing via oviductal nucleic acid delivery, i-GONAD) to produce C57BL/6 mice deficient for tyrosinase. The mean litter size following i-GONAD increased from 4.8 to 7.3 after the AIMA treatment and genetic modifications were confirmed in 80/88 (91%) of the offspring. Thus, AIMA treatment is a promising method for increasing the litter size of mice and may be applied for the easy proliferation of mouse colonies as well as in vivo genetic manipulation, especially when the mouse strains are sensitive to handling.


Assuntos
Gonadotropina Coriônica , Inibinas , Animais , Anticorpos Monoclonais , Feminino , Edição de Genes , Cavalos , Humanos , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Gravidez , Ratos , Superovulação , Tecnologia
4.
J Reprod Dev ; 68(2): 118-124, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980785

RESUMO

Mammalian embryos are most commonly cryopreserved in liquid nitrogen; however, liquid nitrogen is not available in special environments, such as the International Space Station (ISS), and vitrified embryos must be stored at -80°C. Recently, the high osmolarity vitrification (HOV) method was developed to cryopreserve mouse 2-cell stage embryos at -80°C; however, the appropriate embryo is currently unknown. In this study, we compared the vitrification resistance of in vivo-derived, in vitro fertilization (IVF)-derived, and intracytoplasmic sperm injection (ICSI)-derived mouse 2-cell embryos against cryopreservation at -80°C. The ICSI embryos had lower survival rates after warming and significantly lower developmental rates than the in vivo and IVF embryos. Further, IVF embryos had a lower survival rate after warming, but a similar rate to the in vivo embryos to full-term development. This result was confirmed by simultaneous vitrification of in vivo and IVF embryos in the same cryotube using identifiable green fluorescent protein-expressing embryos. We also evaluated the collection timing of the in vivo embryos from the oviduct and found that late 2-cell embryos had higher survival and developmental rates to full-term than early 2-cell embryos. Some early 2-cell embryos remained in the S-phase, whereas most late 2-cell embryos were in the G2-phase, which may have affected the tolerance to embryo vitrification. In conclusion, when embryos must be cryopreserved under restricted conditions, such as the ISS, in vivo fertilized embryos collected at the late 2-cell stage without long culture should be employed.


Assuntos
Injeções de Esperma Intracitoplásmicas , Vitrificação , Animais , Criopreservação/métodos , Embrião de Mamíferos , Fertilização in vitro/métodos , Mamíferos , Camundongos , Concentração Osmolar , Injeções de Esperma Intracitoplásmicas/métodos
5.
BMC Health Serv Res ; 22(1): 1071, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996173

RESUMO

BACKGROUND: The World Health Organization recommends the Maternal and Child Health Handbook (MCH-HB) to promote health service utilization from pregnancy to early childhood. Although many countries have adopted it as a national health policy, there is a paucity of research in MCH-HB's implementation. Thus, this study aimed to evaluate the MCH-HB's implementation status based on the RE-AIM framework (Reach, Effectiveness, Adoption, Implementation, Maintenance), and identify facilitators of, and barriers to its implementation in Angola to understand effective implementation strategies. METHODS: A cross-sectional survey was conducted targeting all health facilities which implemented MCH-HB, subsamples of health workers, and officers responsible for the MCH-HB at the municipality health office. Using the 14 indicators based on the RE-AIM framework, health facilities' overall implementation statuses were assessed. This categorized health facilities into optimal-implementation and suboptimal-implementation groups. To identify barriers to and facilitators of MCH-HB implementation, semi-structured interviews were conducted among health workers and municipality health officers responsible for MCH-HB. The data were analyzed via content analysis. RESULTS: A total of 88 health facilities and 216 health workers were surveyed to evaluate the implementation status, and 155 interviews were conducted among health workers to assess the barriers to and facilitators of the implementation. The overall implementation target was achieved in 50 health facilities (56.8%). The target was achieved by more health facilities in urban than rural areas (urban 68.4%, rural 53.6%) and by more health facilities of higher facility types (hospital 83.3%, health center 59.3%, health post 52.7%). Through the interview data's analysis, facilitators of and barriers to MCH-HB were comprehensively demonstrated. MCH-HB's content advantage was the most widely recognized facilitator and inadequate training for health workers was the most widely recognized barrier. CONCLUSIONS: Strengthening education for health workers, supervision by municipality health officers, and community sensitization were potential implementation strategies. These strategies must be intensified in rural and lower-level health facilities.


Assuntos
Saúde da Criança , Promoção da Saúde , Angola , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Gravidez , População Rural
6.
Biol Reprod ; 104(1): 234-243, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990726

RESUMO

The genus Mus consists of many species with high genetic diversity. However, only one species, Mus musculus (the laboratory mouse), is common in biomedical research. The unavailability of assisted reproductive technologies (ARTs) for other Mus species might be a major reason for their limited use in laboratories. Here, we devised ARTs for Mus spretus (the Algerian mouse), a commonly used wild-derived Mus species. We found that in vitro production of M. spretus embryos was difficult because of low efficacies of superovulation with equine chorionic gonadotropin or anti-inhibin serum (AIS) (5-8 oocytes per female) and a low fertilization rate following in vitro fertilization (IVF; 15.2%). The primary cause of this was the hardening of the zona pellucida but not the sperm's fertilizing ability, as revealed by reciprocal IVF with laboratory mice. The largest number of embryos (16 per female) were obtained when females were injected with AIS followed by human chorionic gonadotropin and estradiol injections 24 h later, and then by natural mating. These in vivo-derived 2-cell embryos could be vitrified/warmed with a high survival rate (94%) using an ethylene glycol-based solution. Importantly, more than 60% of such embryos developed into healthy offspring following interspecific embryo transfer into (C57BL/6 × C3H) F1 female mice. Thus, we have devised practical ARTs for Mus spretus mice, enabling efficient production of embryos and animals, with safe laboratory preservation of their strains. In addition, we have demonstrated that interspecific embryo transfer is possible in murine rodents.


Assuntos
Transferência Embrionária/veterinária , Técnicas de Reprodução Assistida/veterinária , Superovulação , Animais , Criopreservação/veterinária , Feminino , Masculino , Camundongos
7.
Cryobiology ; 98: 127-133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285110

RESUMO

Previously, we developed a method for vitrification of mouse embryos in a near-equilibrium state using EFS35c, PB1 medium containing 35% (v/v) ethylene glycol, and 0.98 M sucrose. This method has advantages in both slow freezing and vitrification. However, since the vitrification solution in this method contains high concentrations of cryoprotectants and thus has high osmolality, the solution would injure oocytes and embryos with high sensitivity to chemical toxicity and high osmolality. In this study, we examined whether embryos could be vitrified in a near-equilibrium state using a solution containing low concentrations of cryoprotectants and thus with low osmolality. To investigate whether embryos were vitrified in a near-equilibrium state, 2-cell mouse embryos were vitrified with EDFS10/10a, PB1 medium containing 10% (v/v) ethylene glycol, 10% (v/v) DMSO, and 0.4 M sucrose, in liquid nitrogen, stored at -80 °C for 4-28 days, and warmed in water at 25 °C. The viability of the embryos was evaluated by the appearance of embryos after warming and developmental ability. When embryos were vitrified in liquid nitrogen using EDFS10/10a, the survival and developmental ability into blastocysts after storage at -80 °C for 7 days were high, indicating that embryos were vitrified in a near-equilibrium state. A high proportion of embryos vitrified with EDFS10/10a developed to term after transportation with dry ice, re-cooling in liquid nitrogen, and transfer to recipients. Therefore, new equilibrium vitrification developed in this study may be useful for oocytes and embryos that are highly sensitive to the toxicity of cryoprotectants and high osmolality.


Assuntos
Criopreservação , Vitrificação , Animais , Blastocisto , Criopreservação/métodos , Crioprotetores/toxicidade , Etilenoglicol/toxicidade , Camundongos
8.
J Reprod Dev ; 66(4): 299-306, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32307339

RESUMO

Assisted reproductive technologies (ARTs) are widely used in the animal industry, human clinics, and for basic research. In small laboratory animal species such as mice, ARTs are essential for the production of animals for experiments, the preservation of genetic resources, and for the generation of new strains of genetically modified animals. The RIKEN BioResource Research Center (BRC) is one of the largest repositories of such animal bioresources, and maintains approximately 9,500 strains of mice with a variety of genetic backgrounds. We have sought to devise ARTs specific to the reproductive and physiological characteristics of each strain. Such ARTs include superovulation, in vitro fertilization (IVF), the cryopreservation of embryos and spermatozoa, transportation of cryopreserved materials and embryo transfer (ET). Of these, superovulation likely has the most influence on animal production because it determines the quantity of starting material for other ARTs. Superovulation using anti-inhibin serum combined with estrous synchronization has resulted in approximately a three-fold increase in production efficiency with IVF-ET in the C57BL/6J strain. Wild-derived strains are important as genetically diverse resources for murine rodents (Genus Mus), and many are unique to the BRC. We have also successfully developed ARTs for more than 50 wild-derived strains, which have been cryopreserved for future use. Our work to improve and develop ARTs for mice and other small laboratory species will contribute to the cost-effectiveness of routine operations at repository centers, and to the provision of high quality animals for research use.


Assuntos
Técnicas de Reprodução Assistida/veterinária , Superovulação , Animais , Criopreservação , Fertilização in vitro/veterinária , Masculino , Camundongos , Roedores , Espermatozoides/fisiologia
9.
Genes Cells ; 23(4): 255-263, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29423928

RESUMO

Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures.


Assuntos
Células Clonais/metabolismo , Edição de Genes , Heterogeneidade Genética , Hipoxantina Fosforribosiltransferase/genética , Ribonucleoproteínas/genética , Sequência de Bases , Sistemas CRISPR-Cas , Células Cultivadas , Células HCT116 , Humanos , Mutagênese , RNA Guia de Cinetoplastídeos , Análise de Célula Única
10.
J Reprod Dev ; 65(5): 467-473, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31447476

RESUMO

Mature male mice (aged 10-12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here, we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first reached the caudal region of the epididymides at day 35; however, they were unable to fertilize oocytes. Caudal epididymal spermatozoa first became competent for oocyte fertilization at day 37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we found that corpus epididymal spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caput epididymal spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epididymal spermatozoa from male mice aged 40 days can be efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that of the conventional IVF protocol.


Assuntos
Epididimo/citologia , Fertilização in vitro/métodos , Espermatozoides/citologia , Animais , Meios de Cultura/farmacologia , Transferência Embrionária , Feminino , Fertilização , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Motilidade dos Espermatozoides , Fatores de Tempo
11.
J Reprod Dev ; 64(2): 117-127, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29269609

RESUMO

Although it is known that the susceptibility of mouse spermatozoa to freezing-thawing varies greatly with genetic background, the underlying mechanisms remain to be elucidated. In this study, to map genetic regions responsible for the susceptibility of spermatozoa to freezing-thawing, we performed in vitro fertilization using spermatozoa from recombinant inbred mice derived from the C57BL/6J and DBA/2J strains, whose spermatozoa showed distinct fertilization abilities after freezing. Genome-wide interval mapping identified two suggestive quantitative trait loci (QTL) associated with fertilization on chromosomes 1 and 11. The strongest QTL on chromosome 11 included 70 genes at 59.237260-61.324742 Mb and another QTL on chromosome 1 included 43 genes at 153.969506-158.217850 Mb. These regions included at least 15 genes involved with testicular expression and possibly with capacitation or sperm motility. Specifically, the Abl2 gene on chromosome 1, which may affect subcellular actin distribution, had polymorphisms between C57BL/6J and DBA/2J that caused at least three amino acid substitutions. A correlation analysis using recombinant inbred strains revealed that the fertilization rate was strongly correlated with the capacitation rate of frozen-thawed spermatozoa after preincubation. This result is consistent with the fact that C57BL/6J frozen-thawed spermatozoa recover their fertilization capacity following treatment with methyl-ß-cyclodextrin to enhance sperm capacitation. Thus, our data provide important clues to the molecular mechanisms underlying cryodamage to mouse spermatozoa.


Assuntos
Criopreservação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Polimorfismo Genético , Proteínas Tirosina Quinases/genética , Locos de Características Quantitativas , Preservação do Sêmen , Espermatozoides , Substituição de Aminoácidos , Animais , Sobrevivência Celular , Crioprotetores/farmacologia , Feminino , Fertilização in vitro/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gravidez , Proteínas Tirosina Quinases/metabolismo , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
12.
Genes Cells ; 21(11): 1253-1262, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27659023

RESUMO

CRISPR-Cas9-mediated genome-editing technology contributes not only to basic genomic studies but also to clinical studies such as genetic correction and virus inactivation. Hepatitis B virus (HBV) is a major target for potential application of CRISPR-Cas9 in eliminating viral DNA from human cells. However, the high stability of covalently closed circular DNA (cccDNA) makes it difficult to completely clear HBV infection. Here, we report highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vector systems that simultaneously target three critical domains of the HBV genome. Co-transfection of an HBV-expressing plasmid and all-in-one CRISPR-Cas9 vectors resulted in significant reduction in viral replicative intermediates and extracellular hepatitis B surface and envelope antigens. In addition, successful fragmentation of the HBV genome was confirmed by DNA sequencing. Despite its high efficacy in suppressing HBV, no apparent off-target mutations were detected by genomic cleavage detection assay and the small number of observed mutations was extremely rare and could only be detected by deep sequencing analysis. Thus, our all-in-one CRISPR-Cas9-nuclease and Cas9-nickase vectors present a model for simultaneous targeting of multiple HBV domains, potentially contributing to a well-designed therapeutic approach for curing HBV patients.


Assuntos
Vetores Genéticos , Vírus da Hepatite B , Inativação de Vírus , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , DNA Viral , Desoxirribonuclease I/metabolismo , Endonucleases , Genoma Viral , Células Hep G2 , Humanos
13.
J Reprod Dev ; 63(6): 539-545, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28824024

RESUMO

In embryo transfer experiments in mice, pseudopregnant females as recipients are prepared by sterile mating with vasectomized males. Because only females at the proestrus stage accept males, such females are selected from a stock of animals based on the appearance of their external genital tract. Therefore, the efficiency of preparing pseudopregnant females largely depends on the size of female colonies and the skill of the operators who select females for sterile mating. In this study, we examined whether the efficiency of preparing pseudopregnant females could be improved by applying an estrous cycle synchronization method by progesterone (P4) pretreatment, which significantly enhances the superovulation outcome in mice. We confirmed that after two daily injections of P4 (designated Days 1 and 2) in randomly selected females, the estrous cycles of most females (about 85%) were synchronized at metestrus on Day 3. When P4-treated females were paired with vasectomized males for 4 days (Days 4-8), a vaginal plug was found in 63% (20/32) of the females on Day 7. After the transfer of vitrified-warmed embryos into their oviducts, 52% (73/140) of the embryos successfully developed into offspring, the rate being comparable to that of the conventional embryo transfer procedure. Similarly, 77% (24/31) of females became pregnant by fertile mating with intact males for 3 days, which allowed the scheduled preparation of foster mothers. Thus, our estrous cycle synchronization method may omit the conventional experience-based process of visually observing the vagina to choose females for embryo transfer. Furthermore, it is expected that the size of female stocks for recipients can be reduced to less than 20%, which could be a great advantage for facilities/laboratories undertaking mouse-assisted reproductive technology.


Assuntos
Sincronização do Estro/métodos , Progesterona/administração & dosagem , Pseudogravidez/induzido quimicamente , Animais , Transferência Embrionária , Feminino , Masculino , Gravidez
14.
Proc Natl Acad Sci U S A ; 111(3): 1120-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398516

RESUMO

For normal fertilization in mammals, it is important that functionally mature sperm are motile and have a fully formed acrosome. The glycosyltransferase-like gene, human polypeptide N-acetylgalactosaminyltransferase-like protein 5 (GALNTL5), belongs to the polypeptide N-acetylgalactosamine-transferase (pp-GalNAc-T) gene family because of its conserved glycosyltransferase domains, but it uniquely truncates the C-terminal domain and is expressed exclusively in human testis. However, glycosyltransferase activity of the human GALNTL5 protein has not been identified by in vitro assay thus far. Using mouse Galntl5 ortholog, we have examined whether GALNTL5 is a functional molecule in spermatogenesis. It was observed that mouse GALNTL5 localizes in the cytoplasm of round spermatids in the region around the acrosome of elongating spermatids, and finally in the neck region of spermatozoa. We attempted to establish Galntl5-deficient mutant mice to investigate the role of Galntl5 in spermiogenesis and found that the heterozygous mutation affected male fertility due to immotile sperm, which is diagnosed as asthenozoospermia, an infertility syndrome in humans. Furthermore, the heterozygous mutation of Galntl5 attenuated glycolytic enzymes required for motility, disrupted protein loading into acrosomes, and caused aberrant localization of the ubiquitin-proteasome system. By comparing the protein compositions of sperm from infertile males, we found a deletion mutation of the exon of human GALNTL5 gene in a patient with asthenozoospermia. This strongly suggests that the genetic mutation of human GALNTL5 results in male infertility with the reduction of sperm motility and that GALNTL5 is a functional molecule essential for mammalian sperm formation.


Assuntos
Infertilidade Masculina/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Acrossomo/metabolismo , Animais , Astenozoospermia/metabolismo , Citoplasma/metabolismo , Heterozigoto , Humanos , Lectinas/metabolismo , Masculino , Camundongos , N-Acetilgalactosaminiltransferases/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Espermátides/metabolismo , Espermatogênese , Testículo/metabolismo , Ubiquitina/química , Polipeptídeo N-Acetilgalactosaminiltransferase
15.
BMC Genomics ; 17(1): 979, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894274

RESUMO

BACKGROUND: Although CRISPR/Cas enables one-step gene cassette knock-in, assembling targeting vectors containing long homology arms is a laborious process for high-throughput knock-in. We recently developed the CRISPR/Cas-based precise integration into the target chromosome (PITCh) system for a gene cassette knock-in without long homology arms mediated by microhomology-mediated end-joining. RESULTS: Here, we identified exonuclease 1 (Exo1) as an enhancer for PITCh in human cells. By combining the Exo1 and PITCh-directed donor vectors, we achieved convenient one-step knock-in of gene cassettes and floxed allele both in human cells and mouse zygotes. CONCLUSIONS: Our results provide a technical platform for high-throughput knock-in.


Assuntos
Técnicas de Introdução de Genes , Recombinação Homóloga , Zigoto , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Linhagem Celular , Cromossomos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Exodesoxirribonucleases/metabolismo , Marcação de Genes , Loci Gênicos , Humanos , Camundongos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
16.
Biol Reprod ; 94(1): 21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26632610

RESUMO

Producing many mature oocytes is of great importance for assisted reproductive technologies. In mice, superovulation by consecutive injections of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) has been the gold standard for oocyte collection. However, the yield of mature oocytes by this regimen can fluctuate according to the stage of the estrous cycle, strain, and age. Therefore, our objective was to develop a high-yield superovulation protocol to collect higher numbers of oocytes from adult female mice of different strains and ages. First, we aimed to synchronize the estrous cycle using C57BL/6 (B6) female mice. Most (93%) were synchronized to metestrus after two daily injections of progesterone. Second, we found that with the injection of anti-inhibin serum (AIS) instead of eCG, the mean number of ovulated oocytes almost doubled (21 vs. 41 per mouse). Third, by combining estrous cycle synchronization with two AIS injections, we obtained 62 oocytes per mouse, about three times that with the eCG-hCG protocol. Importantly, this approach increased the proportion of mice that ovulated >25 oocytes from about 40% (eCG-hCG) to 90%. The same protocol was also effective in other inbred (BALB/cA), outbred (ICR), and hybrid (B6D2F1) strains. In addition, B6 female mice aged over 1 yr ovulated 1.8-fold more oocytes by this protocol. Thus, estrous cycle synchronization followed by AIS-hCG yielded a broadly applicable, highly efficient superovulation. This protocol should promote the effective use of invaluable female mouse strains and decrease the numbers of animals euthanized.


Assuntos
Anticorpos Bloqueadores/farmacologia , Sincronização do Estro/efeitos dos fármacos , Inibinas/antagonistas & inibidores , Inibinas/imunologia , Superovulação/efeitos dos fármacos , Envelhecimento , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Fertilização in vitro/métodos , Hormônio Foliculoestimulante/sangue , Metestro/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Oócitos , Gravidez , Progesterona/farmacologia , Zona Pelúcida/efeitos dos fármacos
17.
BMC Genomics ; 16: 274, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25887549

RESUMO

BACKGROUND: The pronuclear injection (PI) is the simplest and widely used method to generate transgenic (Tg) mice. Unfortunately, PI-based Tg mice show uncertain transgene expression due to random transgene insertion in the genome, usually with multiple copies. Thus, typically at least three or more Tg lines are produced by injecting over 200 zygotes and the best line/s among them are selected through laborious screening steps. Recently, we developed technologies using Cre-loxP system that allow targeted insertion of single-copy transgene into a predetermined locus through PI. We termed the method as PI-based Targeted Transgenesis (PITT). A similar method using PhiC31-attP/B system was reported subsequently. RESULTS: Here, we developed an improved-PITT (i-PITT) method by combining Cre-loxP, PhiC31-attP/B and FLP-FRT systems directly under C57BL/6N inbred strain, unlike the mixed strain used in previous reports. The targeted Tg efficiency in the i-PITT typically ranged from 10 to 30%, with 47 and 62% in two of the sessions, which is by-far the best Tg rate reported. Furthermore, the system could generate multiple Tg mice simultaneously. We demonstrate that injection of up to three different Tg cassettes in a single injection session into as less as 181 zygotes resulted in production of all three separate Tg DNA containing targeted Tg mice. CONCLUSIONS: The i-PITT system offers several advantages compared to previous methods: multiplexing capability (i-PITT is the only targeted-transgenic method that is proven to generate multiple different transgenic lines simultaneously), very high efficiency of targeted-transgenesis (up to 62%), significantly reduces animal numbers in mouse-transgenesis and the system is developed under C57BL/6N strain, the most commonly used pure genetic background. Further, the i-PITT system is freely accessible to scientific community.


Assuntos
Marcação de Genes , Técnicas de Transferência de Genes , Animais , Células-Tronco Embrionárias , Feminino , Injeções/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
J Reprod Dev ; 60(3): 187-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24583808

RESUMO

Successful in vitro fertilization (IVF) in mice has been achieved using spermatozoa at concentrations specifically optimized for the experimental conditions, such as species and source of spermatozoa. Although IVF in mice is mostly performed using about 80-500 µl drops, it is expected that the number of spermatozoa used for insemination can be reduced by decreasing the size of the IVF drops. The present study was undertaken to examine the extent to which the number of spermatozoa used for IVF could be reduced by using small droplets (1 µl). We devised the experimental parameters using frozen-thawed spermatozoa from C57BL/6 mice in anticipation of broader applications to other mouse facilities. We found that as few as 5 spermatozoa per droplet could fertilize oocytes (1 or 3 oocytes per droplet), although the fertilization rates were low (13-15%). Practical fertilization rates (> 40%) could be achieved with frozen-thawed C57BL/6J spermatozoa, which are sensitive to cryopreservation, when 20 sperm per droplet were used to inseminate 3 oocytes. Even with spermatozoa from a very poor quality suspension (10% motility), about 25% of oocytes were fertilized. Our calculations indicate that the number of inseminated spermatozoa per oocyte can be reduced to 1/96-1/240 by this method. In two separate embryo transfer experiments, 60% and 47%, respectively, of embryos developed to term. Our microdroplet IVF method may be particularly advantageous when only a limited number of motile spermatozoa are available because of inadequate freezing-thawing or genetic reasons.


Assuntos
Fertilização in vitro/métodos , Interações Espermatozoide-Óvulo , Espermatozoides/citologia , Animais , Criopreservação , Feminino , Fertilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Oócitos/citologia , Preservação do Sêmen , Contagem de Espermatozoides
19.
Sci Rep ; 14(1): 8294, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670985

RESUMO

Rats are multiparous rodents that have been used extensively in research; however, the low reproductive performance of some rat strains hampers the broader use of rats as a biomedical model. In this study, the possibility of increasing the litter size after natural mating in rats through superovulation using an anti-inhibin monoclonal antibody (AIMA) was examined. In outbred Wistar rats, AIMA increased the number of ovulated oocytes by 1.3-fold. AIMA did not affect fertilization and subsequent embryonic development, resulting in a 1.4-fold increase in litter size and a high pregnancy rate (86%). In contrast, conventional superovulation by eCG/hCG administration decreased the pregnancy rate to 6-40% and did not increase the litter size. In inbred Brown Norway rats, AIMA increased the litter size by 1.2-fold, and the pregnancy rate increased more than twice (86% versus 38% in controls). AIMA also increased the litter size by 1.5-fold in inbred Tokai High Avoiders and Fischer 344 rats. AIMA increased the efficiency of offspring production by 1.5-, 2.7-, 1.4-, and 1.4-fold, respectively, in the four rat strains. Thus, AIMA may consistently improve the reproductive performance through natural mating in rats, which could promote the use of AIMA in biomedical research.


Assuntos
Anticorpos Monoclonais , Inibinas , Tamanho da Ninhada de Vivíparos , Superovulação , Animais , Feminino , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Gravidez , Ratos , Superovulação/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Taxa de Gravidez , Ratos Wistar , Reprodução/efeitos dos fármacos , Masculino , Ratos Endogâmicos F344
20.
Sci Rep ; 13(1): 11175, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430017

RESUMO

Wild-derived mouse strains have been extensively used in biomedical research because of the high level of inter-strain polymorphisms and phenotypic variations. However, they often show poor reproductive performance and are difficult to maintain by conventional in vitro fertilization and embryo transfer. In this study, we examined the technical feasibility of derivation of nuclear transfer embryonic stem cells (ntESCs) from wild-derived mouse strains for their safe genetic preservation. We used leukocytes collected from peripheral blood as nuclear donors without sacrificing them. We successfully established 24 ntESC lines from two wild-derived strains of CAST/Ei and CASP/1Nga (11 and 13 lines, respectively), both belonging to Mus musculus castaneus, a subspecies of laboratory mouse. Most (23/24) of these lines had normal karyotype, and all lines examined showed teratoma formation ability (4 lines) and pluripotent marker gene expression (8 lines). Two male lines examined (one from each strain) were proven to be competent to produce chimeric mice following injection into host embryos. By natural mating of these chimeric mice, the CAST/Ei male line was confirmed to have germline transmission ability. Our results demonstrate that inter-subspecific ntESCs derived from peripheral leukocytes could provide an alternative strategy for preserving invaluable genetic resources of wild-derived mouse strains.


Assuntos
Pesquisa Biomédica , Células Sanguíneas , Masculino , Animais , Camundongos , Leucócitos , Transporte Ativo do Núcleo Celular , Células-Tronco Embrionárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA