Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2020: 9390287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802007

RESUMO

Information on combining ability and reciprocal effects (REC) facilitates efficient utilization of genetic materials in a breeding program. This study was conducted (at the CSIR-Savanna Agricultural Research Institute, Ghana) to determine general combining ability (GCA) and specific combining ability (SCA), heritability, genetic advance, GCA, and SCA effects as well as the relationship between parents per se performance and progenies for yield components and maturity traits in cowpea. The test populations were derived using a 5 × 5 complete diallel cross of parents with different yield attributes and maturity durations. The results indicated that GCA was predominant for number of days to 90% pod maturity, plant height at maturity, and hundred-seed weight. This showed that genes with additive effects conditioned these traits. Padi-Tuya, Songotra, and IT86D-610 were identified as good general combiners for grain yield, while Sanzi-Nya was identified as a general combiner for developing extra-early duration cowpea varieties. Crosses Songotra × Sanzi-Nya, SARC-1-57-2 × IT86D-610, Songotra × SARC-1-57-2, and Padi-Tuya × Songotra were identified as good specific combiners for days to 50% flowering, pod length, pods per plant, pod yield, grain yield, and seeds per pod. The findings from this study provide useful information on the inheritance of early maturity and yield traits in cowpea. This can be exploited to develop high yielding and early maturing cowpea varieties as climate smart strategy to mitigate climate change via breeding methods such as pedigree selection and marker assisted backcrossing (MABC). Pedigree selection method is being used to develop varieties from the hybrid with high and significant SCA for grain yield, whereas the development of extra-early duration varieties via MABC with Sanzi-Nya (general combiner for earliness traits) as a donor parent is ongoing.


Assuntos
Vigna/crescimento & desenvolvimento , Vigna/genética , Alelos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Variação Genética , Genótipo , Gana , Sementes/genética , Vigna/fisiologia
2.
Physiol Mol Biol Plants ; 26(6): 1263-1280, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549688

RESUMO

With legumes, symbiotic N2 fixation can meet the species N demand and reduce the over-reliance on chemical fertilizers in tropical regions where N deficiency is a major factor limiting crop yields and increased agricultural sustainability. Therefore, to optimize the use of cowpea (Vigna unguiculata L. Walp) germplasm in effective breeding, evaluation of genetic diversity and quantification of N2 fixation are essential prerequisites. The aim of this study was to explore the level of diversity using SSR markers and N2-fixing traits in a set of cowpea germplasm grown in Ghana. We analysed 49 cowpea accessions collected from Northern Ghana using qualitative vegetative and N2 fixation traits, and simple sequence repeat (SSR) markers. Experimental field results revealed considerable morpho-physiological variation for plant growth habits, grain yield and symbiotic performance between and among the cowpea accessions. Results from both the 15N natural abundance and ureides in the xylem sap were able to descriminate between high and low levels of N2 fixation in cowpea accessions. Five subpopulations were identified within accessions inferred from STRUCTURE 2.3.4. A general linear model was used to assess the association of SSR markers with N2-fixing traits. There were significant (p ≤ 0.05) links between SSR markers and symbiosis-related traits such as nodule number, nodule dry weight, shoot dry weight, N-fixed, N derived from air (Ndfa), and relative uried-N (RU-N).

3.
Front Sociol ; 8: 1260407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899782

RESUMO

Introduction: This case study reports on how a gender responsive breeding program contributes to meeting the trait preference of men and women for improved cowpea varieties in northern Ghana. Methods: Fifty-eight early-maturing, medium-maturing and dual-purpose cowpea lines were planted at the CSIR-SARI research fields and women and men farmers invited for participatory plant breeding (PPB) in 2016. Selected lines from the PPB were further evaluated in 2017 using participatory varietal selection (PVS) in 5 districts in northern Ghana. In addition, 20 focus group discussions (FGDs) were held in 2018 in 10 randomly selected communities with 260 participants (130 women and 130 men) across the districts where the PVS had been held previously. Results and discussion: The study finds drought tolerance, short cooking time and pest resistance to be the most preferred cowpea traits among both men and women. The study also finds that gender differences exist in trait preference, especially for traits such as seed coat color, earliness, pod above canopy and indeterminate growth habit. As breeding programs focus on improving genetic gains for tolerance of biotic and abiotic stresses, equal attention must be given to breeding for traits desired by women.

4.
Front Nutr ; 9: 786972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369089

RESUMO

Communicable diseases are illnesses caused by pathogenic biological agents, including viruses, bacteria, fungi, parasites, and protozoa. Such diseases spread among people through contact with contaminated surfaces, bodily fluids, or blood products, or through the air, insect bites, or consuming contaminated food and beverages. Although some communicable diseases can be treated or prevented by taking medication and vaccines, there has been an increase in awareness of adopting a healthy diet to aid in the prevention and reversal of these diseases. One popular diet is a plant-based diet. Plant-based diets generally consist of vegetables, grains, nuts, seeds, legumes, and fruits, without any animal-source foods or artificial ingredients. Over the years, this diet has continuously increased in popularity. Reasons for following a plant-based diet are varied but include health benefits, such as improving immunity, and reducing the risk of heart disease, diabetes, and some cancers. Scientific evidence even shows that just an increased vegetable intake can decrease the occurrence of chronic diseases caused by viruses, such as hepatitis viruses, and reduce the risk of severe coronavirus disease 2019. Therefore, this mini review discusses the effectiveness of adopting a plant-based diet in ameliorating diseases caused by selected viruses and its limitations.

5.
Nat Prod Res ; 34(8): 1158-1162, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663354

RESUMO

Cowpea (Vigna unguiculata L. Walp.) is an important grain legume in Africa exhibiting high morpho-genetic diversity. However, not much information exists on the phytochemical profiles of its hulls. This study explored the metabolite profiles of seed-coats from thirteen cowpea accessions of varying phenotypes using UPLC-QTOF-MS and chemometric analysis. A total of 34 secondary metabolites were identified, which comprised phenolic acids, flavonoids, anthocyanins, sphingolipids and fatty acids. Quantification of selected phenolic compounds revealed marked variations among the cowpea accessions. The chemical profiles of the test accessions were distinguished by multivariate analysis, and the results revealed a marked influence of seed-coat pigmentation on the observed differences in their metabolite profiles. Moreover, delphinidin (traces to 2257.6 µg/g), catechin glucoside (traces to 2840.6 µg/g), catechin (traces to 2089.2 µg/g) and epicatechin (26.3 to 3222.7 µg/g) contributed to the segregation amongst the studied samples. The concentrations of the discriminant metabolites were greater in the dark seeded cowpeas compared to their lighter seeded counterparts. The findings represent a useful contribution to the literature on cowpea seed coat metabolites, and also reveal their potential for use in the development of food and pharmaceutical products.


Assuntos
Metaboloma , Sementes/metabolismo , Vigna/metabolismo , Antocianinas/análise , Gana , Espectrometria de Massas , Pigmentação , Análise de Componente Principal , Vigna/química
6.
Plant Breed ; 138(4): 487-499, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31787790

RESUMO

Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP-GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large-scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega-initiatives facilitated release of a number of new varieties and also dissemination of on-the-shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics-assisted breeding approaches and rapid generation advancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA