Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 202: 111044, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797447

RESUMO

Terbium-152 is one of four terbium radioisotopes that together form a potential theranostic toolbox for the personalised treatment of tumours. As 152 Tb decay by positron emission it can be utilised for diagnostics by positron emission tomography. For use in radiopharmaceuticals and for activity measurements by an activity calibrator a high radionuclide purity of the material and an accurate and precise knowledge of the half-life is required. Mass-separation and radiochemical purification provide a production route of high purity 152Tb. In the current work, two mass-separated samples from the CERN-ISOLDE facility have been assayed at the National Physical Laboratory to investigate the radionuclide purity. These samples have been used to perform four measurements of the half-life by three independent techniques: high-purity germanium gamma-ray spectrometry, ionisation chamber measurements and liquid scintillation counting. From the four measurement campaigns a half-life of 17.8784(95) h has been determined. The reported half-life shows a significant difference to the currently evaluated half-life (ζ-score = 3.77), with a relative difference of 2.2 % and an order of magnitude improvement in the precision. This work also shows that under controlled conditions the combination of mass-separation and radiochemical separation can provide high-purity 152Tb.

2.
J Radioanal Nucl Chem ; 316(2): 839-848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725152

RESUMO

The effect of competing ions on the sorption behaviour of uranium onto carboxyl-functionalised graphene oxide (COOH-GO) were studied in batch experiments in comparison to graphene oxide (GO) and graphite. The effect of increasing the abundance of select chemical functional groups, such as carboxyl groups, on the selectivity of U sorption was investigated. In the course of the study, COOH-GO demonstrated superior performance as a sorbent material for the selective removal of uranyl ions from aqueous solution with a distribution coefficient of 3.72 ± 0.19 × 103 mL g-1 in comparison to 3.97 ± 0.5 × 102 and 2.68 ± 0.2 × 102 mL g-1 for GO and graphite, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA