Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet ; 395(10233): 1345-1360, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32171078

RESUMO

BACKGROUND: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. METHODS: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. FINDINGS: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50). INTERPRETATION: Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance. FUNDING: UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Adolescente , Adulto , Amodiaquina/administração & dosagem , Amodiaquina/uso terapêutico , Antraquinonas/administração & dosagem , Antraquinonas/uso terapêutico , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/administração & dosagem , Resistência a Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Masculino , Mefloquina/administração & dosagem , Mefloquina/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Reação em Cadeia da Polimerase , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico , Resultado do Tratamento , Adulto Jovem
2.
Nat Commun ; 14(1): 4216, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452051

RESUMO

Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.


Assuntos
Artemisininas , Parasitos , Animais , Humanos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Asparagina/genética , Aminoácidos , Glutamina/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Parasitos/genética , Parasitos/metabolismo
3.
Clin Infect Dis ; 53(4): 349-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21810747

RESUMO

BACKGROUND: Coma is a frequent presentation of severe malaria in adults and an important cause of death. The role of cerebral swelling in its pathogenesis, and the possible benefit of intravenous mannitol therapy to treat this, is uncertain. METHODS: A computed tomographic (CT) scan of the cerebrum and lumbar puncture with measurement of cerebrospinal fluid (CSF) pressure were performed on admission for 126 consecutive adult Indian patients with cerebral malaria. Patients with brain swelling on CT scan were randomized to adjunctive treatment with intravenous mannitol (1.5 g/kg followed by 0.5 g/kg every 8 hours; n = 30) or no adjunctive therapy (n = 31). RESULTS: On CT scan 80 (63%) of 126 patients had cerebral swelling, of whom 36 (29%) had moderate or severe swelling. Extent of brain swelling was not related to coma depth or mortality. CSF pressures were elevated (≥200 mm H(2)O) in 43 (36%) of 120 patients and correlated with CT scan findings (P for trend = .001). Mortality with mannitol therapy was 9 (30%) of 30 versus 4 (13%) of 31 without adjunctive therapy (hazard ratio, 2.4 [95% confidence interval, 0.8-7.3]; P = .11). Median coma recovery time was 90 hours (range, 22-380 hours) with mannitol versus 32 hours (range, 5-168 hours) without (P = .02). CONCLUSIONS: Brain swelling on CT scan is a common finding in adult patients with cerebral malaria but is not related to coma depth or survival. Mannitol therapy as adjunctive treatment for brain swelling in adult cerebral malaria prolongs coma duration and may be harmful.


Assuntos
Edema Encefálico/tratamento farmacológico , Diuréticos Osmóticos/uso terapêutico , Malária Cerebral/tratamento farmacológico , Manitol/uso terapêutico , Adulto , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/fisiopatologia , Pressão do Líquido Cefalorraquidiano , Distribuição de Qui-Quadrado , Coma/tratamento farmacológico , Coma/etiologia , Diuréticos Osmóticos/efeitos adversos , Feminino , Humanos , Índia , Injeções Intravenosas , Estimativa de Kaplan-Meier , Malária Cerebral/diagnóstico por imagem , Malária Cerebral/fisiopatologia , Masculino , Manitol/efeitos adversos , Estatísticas não Paramétricas , Tomografia Computadorizada por Raios X
5.
Infect Genet Evol ; 69: 107-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677532

RESUMO

Host genetic factors are frequently ascribed to differential malaria outcomes as a by-product of evolutionary adaptation. To this respect, Tumor Necrosis factor alpha (TNF-α), a human cytokine, is known to be associated with malaria through its differential regulation in diverse malaria manifestations. Since diversity in differential malaria outcome is uncommon in every endemic settings, possible association of TNF-α and malaria is not commonly established. In order to check for association between the occurrence of Single Nucleotide Polymorphisms (SNPs) in the TNF-α gene with different malaria manifestations, we have sequenced a 4011 bp region constituting the promoter and the whole gene of human TNF-α in 61 patients [(16 cerebral plus severe (SCM), 21 severe (SM) and 24 uncomplicated (UM)] samples in a highly malaria endemic state (Odisha) of India. Multiple sequence alignment revealed presence of six SNPs (-1031 T > C, -863C > A, -857C > T, -308G > A, -806C > T, +787C > A), out of which the -806C > T and +787C > A are novel in malaria patients in general and the +787C > A was detected for the first time in humans. Although alleles due to six different SNPs segregate differentially in the three groups of malaria (SCM, SM and UM) in the present study, interestingly, for the -1031 T > C position, the frequency of individuals possessing the homozygous rare allele was higher in the SCM group with a higher number of heterozygotes in the UM group. The Tajima's D values considering all the SNPs in a defined group were positive and statistically insignificant conforming no evolutionary constraint. However, statistically significant deviation from expectation under Hardy-Weinberg equilibrium for -1031 T > C SNP in the UM group points towards the probable role of natural selection providing some kind of protection to malaria in Odisha, India.


Assuntos
Evolução Molecular , Predisposição Genética para Doença , Malária/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/genética , Alelos , Feminino , Ligação Genética , Haplótipos , Humanos , Índia/epidemiologia , Desequilíbrio de Ligação , Malária/epidemiologia , Malária/parasitologia , Malária Cerebral/epidemiologia , Malária Cerebral/genética , Malária Cerebral/parasitologia , Masculino , Morbidade , Avaliação de Resultados da Assistência ao Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA