Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804768

RESUMO

Poly(ethylene glycol)-b-polyphosphoester (PEG-b-PPE) block copolymer nanoparticles are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE block of these PEG-b-PPE amphiphilic copolymers. A PEG-b-PPE copolymer bearing pendant vinyl groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety. Ketoconazole was used as model for hydrophobic drugs. Comparison of the drug loading with PEG-b-PPE bearing shorter pendant groups is reported evidencing the key role of the structure of the pendant group on the PPE backbone. Finally, a first evidence of the biocompatibility of these novel PEG-b-PPE copolymers was achieved by performing cytotoxicity tests. The PEG-b-PPE derived by tocopherol was evidenced as particularly promising as delivery system of poorly water-soluble drugs.


Assuntos
Portadores de Fármacos , Desenho de Fármacos , Micelas , Poliésteres , Polietilenoglicóis , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cetoconazol/química , Cetoconazol/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico
2.
Macromol Rapid Commun ; 39(23): e1800678, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30387221

RESUMO

Functional synthetic polymers are frequently explored for their use in the biomedical field. To fulfill the stringent demands of biodegradability and compatibility, the materials need to be versatile and tunable. Post-modification is often considered challenging for well-known degradable materials like poly(lactic acid) because of their chemical inertness. In this work a procedure is proposed to produce densely functionalized polymer particles using oligomeric precursors synthesized via the Morita-Baylis-Hillman reaction. This allows for a variety of post-modification reactions to serve bio-conjugation or tuning of the material properties. The particles are subjected to basic media and found to be degradable. Furthermore, cytotoxicity tests confirm good biocompatibility. Finally, as a proof of concept to demonstrate the versatility of the particles, post-modification reactions are carried out through the formation of imines.


Assuntos
Polímeros/síntese química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Polímeros/farmacologia , Propriedades de Superfície , Suínos
3.
Nanomedicine ; 13(5): 1663-1671, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28366819

RESUMO

A major conceptual breakthrough in cell signaling has been the finding of EV as new biomarker shuttles in body fluids. Now, one of the major challenges in using these nanometer-sized biological entities as diagnostic marker is the development of translational methodologies to profile them. SPR offers a promising label-free and real time platform with a high potential for biomarker detection. Therefore, we aimed to develop a uniform SPR methodology to detect specific surface markers on EV derived from patient with CHD. EVs having an approximate size range between 30 and 100 nm (~48.5%) and 100-300 nm (~51.5%) were successfully isolated. The biomarker profile of EV was verified using immunogold labeling, ELISA and SPR. Using SPR, we demonstrated an increased binding of EV derived from patients with CHD to anti-ICAM-1 antibodies as compared to EV from healthy donors. Our current findings open up novel opportunities for in-depth and label-free investigation of EV.


Assuntos
Biomarcadores , Células Endoteliais , Vesículas Extracelulares , Ressonância de Plasmônio de Superfície , Doença das Coronárias , Humanos , Inflamação , Nanotecnologia/métodos
4.
Angiogenesis ; 18(2): 163-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25490937

RESUMO

AIMS: The mechanisms of monocyte recruitment to arteriogenic collaterals are largely unknown. We investigated the role of chemokine (C-X-C-motif) ligand 1 (CXCL1) and its cognate receptor, chemokine (C-X-C-motif) receptor 2 (CXCR2) in arteriogenesis. METHODS AND RESULTS: After femoral artery ligation in Sprague-Dawley rats, either native collaterals were harvested or placebo, CXCL1 or CXCR2 blocker was administered via an osmopump. Perfusion recovery was measured with Laser Doppler, leukocyte populations were analyzed by fluorescence-activated cell sorting, and hind limb sections were stained for macrophage marker cluster of differentiation 68 (CD68). In vitro, fluorescent CXCL1 or human acute monocytic leukemia cell line (THP-1) monocytic cells were flown over shear-stressed endothelium. CXCL1 mRNA expression in collaterals was dramatically upregulated already 1 h after ligation (ratio ligated/sham 5.73). CD68 mRNA was upregulated from 12 h until 3 days after ligation (peak ratio ligated/sham 2.65). CXCL1 treatment augmented perfusion recovery at 3 and 7 days (p < 0.05) after ligation, and a significant increase in the number of peri-collateral macrophages was evident concomitantly (p < 0.05). Conversely, CXCR2 antagonist treatment caused a decrease in perfusion recovery both at 7 and 10 days postligation (p = 0.01) and also significantly reduced the number of peri-collateral macrophages (p < 0.05). In vitro, CXCL1 tethered to and was taken up by endothelial cells under shear stress conditions and enhanced THP-1 adherence compared to control (p < 0.05). In contrast, CXCR2 antagonist compromised THP-1 adherence to endothelial cells (p < 0.05). CONCLUSION: CXCL1 presented on the luminal endothelial surface leads to an increase in the number of peri-collateral macrophages, thus improving the arteriogenic response after arterial ligation.


Assuntos
Artérias/crescimento & desenvolvimento , Quimiocina CXCL1/farmacologia , Células Musculares/citologia , Animais , Células Cultivadas , Quimiocina CXCL1/administração & dosagem , Quimiocina CXCL1/genética , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-8B/antagonistas & inibidores
5.
Macromol Biosci ; 24(4): e2300434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994518

RESUMO

Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure. Here, two readily applicable titanium-coatings based on hydrophilic carboxybetaine polymers that turn the surface stealth thereby preventing bacterial adhesion and colonization are developed. These coatings are biocompatible, do not affect cell functionality, exhibit great antifouling properties, and do not cause additional inflammation during the healing process. In this way, the coatings can prevent implant-related infections, while at the same time being completely innocuous to its biological environment. Thus, these coating strategies are a promising route to enhance the biocompatibility of orthopedic implants and have a high potential for clinical use, while being easy to implement in the implant manufacturing process.


Assuntos
Materiais Revestidos Biocompatíveis , Titânio , Titânio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Próteses e Implantes , Osseointegração , Polímeros , Propriedades de Superfície
6.
Differentiation ; 84(1): 62-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22683047

RESUMO

Congenital cardiac abnormalities are, due to their relatively high frequency and severe impact on quality of life, an important focus in cardiovascular research. Recently, various human studies have revealed a high coincidence of VEGF and NOTCH polymorphisms with cardiovascular outflow tract anomalies, such as bicuspid aortic valves and Tetralogy of Fallot, next to predisposition for cardiovascular pathologies, including atherosclerosis and aortic valve calcification. This genetic association between VEGF/NOTCH mutations and congenital cardiovascular defects in humans has been supported by substantial proof from animal models, revealing interaction of both pathways in cellular processes that are crucial for cardiac development. This review focuses on the role of VEGF and NOTCH signaling and their interplay in cardiogenesis with special interest to coronary and outflow tract development. An overview of the association between congenital malformations and VEGF/NOTCH polymorphisms in humans will be discussed along with their potential mechanisms and processes as revealed by transgenic mouse models. The molecular and cellular interaction of VEGF and subsequent Notch-signaling in these processes will be highlighted.


Assuntos
Diferenciação Celular , Cardiopatias Congênitas/genética , Coração/embriologia , Miócitos Cardíacos/metabolismo , Receptor Notch1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Aterosclerose/genética , Vasos Coronários/embriologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Valvas Cardíacas/embriologia , Humanos , Camundongos , Mutação , Miócitos Cardíacos/citologia , Polimorfismo Genético , Receptor Notch1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Adv Sci (Weinh) ; 10(5): e2203053, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526599

RESUMO

Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.


Assuntos
Macrófagos , Infarto do Miocárdio , Humanos , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Prognóstico , Redes Reguladoras de Genes
8.
Arterioscler Thromb Vasc Biol ; 31(5): 1059-65, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21330605

RESUMO

OBJECTIVE: Notch has been implicated in neointima formation as reflected by increased Notch/Jagged expression on vascular injury and the promigratory effect of Notch signaling on smooth muscle cells. Soluble Jagged-1 (sJag1) has been shown to inhibit Notch signaling in vitro; however, its capacity to suppress neointima formation remains unknown. METHODS AND RESULTS: Balloon injury of rat carotid arteries induced Notch1, Notch3, and Jagged-1 expression at days 3 and 14 postinjury. Notch signaling was activated as shown by increased expression of the Notch target gene Herp2. Adenoviral sJag1 (Ad-sJag1) transfection reduced neointima formation in carotid artery and enhanced reendothelialization, whereas adenoviral full-length Jagged-1 (Ad-Fl-Jag1) or LacZ had no effect. Injury-induced Herp2 expression was absent in vessels treated with Ad-sJag1. Consistently, Herp2 expression was reduced in Ad-sJag1-infected or recombinant sJag1 -treated coronary artery smooth muscle cells (CASMCs). Ad-sJag1 had no effect on human umbilical endothelial cell behavior, but it significantly reduced proliferation and migration of CASMCs. Overexpression of Herp2 in sJag1-treated CASMCs rescued the migratory and proliferative capacity in vitro. CONCLUSIONS: Our results demonstrate that sJag1 can inhibit neointima formation after balloon injury by decreasing smooth muscle cell proliferation and migration through interference with Notch-Herp2 signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Túnica Íntima/metabolismo , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/genética , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Hiperplasia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Ratos Sprague-Dawley , Receptor Notch3 , Proteínas Serrate-Jagged , Fatores de Tempo , Transfecção , Túnica Íntima/patologia
9.
Chem Sci ; 13(36): 10699-10706, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320705

RESUMO

The biocompatibility, tunable degradability and broad functionalities of polyphosphoesters and their potential for biomedical applications have stimulated a renewed interest from Chemistry, Medicinal Chemistry and Polymer Sciences. Commercial applications of polyphosphoesters as biomaterials are still hampered because of the time and resource-intensive sourcing of their corresponding monomers, in addition to the corrosive and sensitive nature of their intermediates and by-products. Here, we present a groundbreaking challenge for sourcing the corresponding cyclic phosphate monomers by a different approach. This approach relies on the use of continuous flow technologies to intensify the end-to-end preparation of cyclic phosphate monomers with a semi-continuous modular flow platform. The applied flow technology mitigates both safety and instability issues related to the more classical production of cyclic phosphate monomers. The first flow module allows safe synthesis of a library of cyclic chlorophosphite building blocks and features in-line 31P NMR real-time monitoring. After optimization on the microfluidic scale, this first module is successfully transposed toward mesofluidic scale with a daily throughput of 1.88 kg. Downstream of the first module, a second module is present, allowing the quantitative conversion of cyclic chlorophosphites with molecular oxygen toward chlorophosphate derivatives within seconds. The two modules are concatenable with a downstream semi-batch quench of intermediate chlorophosphate with alcohols, hence affording the corresponding cyclic phosphate monomers. Such a continuous flow setup provides considerable unprecedented advantages to safely and efficiently synthesize a library of versatile high value-added cyclic phosphate monomers at large scale. These freshly produced monomers can be successfully (co)polymerized, using either batch or flow protocols, into well-defined polyphosphoesters with assessed thermal properties and cytotoxicity.

10.
J Biol Chem ; 285(52): 40681-9, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20959466

RESUMO

The DELTA like-4 ligand (DLL4) belongs to the highly conserved NOTCH family and is specifically expressed in the endothelium. DLL4 regulates crucial processes in vascular growth, including endothelial cell (EC) sprouting and arterial specification. Its expression is increased by VEGF-A. In the present study, we show that VEGF-induced DLL4 expression depends on NOTCH activation. VEGF-induced DLL4 expression was prevented by the blockage of NOTCH signaling with γ-secretase or ADAM inhibitors in human cardiac microvascular ECs. Similar to VEGF-A, recombinant DLL4 itself stimulated NOTCH signaling and resulted in up-regulation of DLL4, suggesting a positive feed-forward mechanism. These effects were abrogated by NOTCH inhibitors but not by inhibition of VEGF signaling. NOTCH activation alone suffices to induce DLL4 expression as illustrated by the positive effect of NOTCH intracellular domain (NICD)-1 or -4 overexpression. To discriminate between NICD/RBP-Jκ and FOXC2-regulated DLL4 expression, DLL4 promoter activity was assessed in promoter deletion experiments. NICD induced promoter activity was dependent on RBP-Jκ site but independent of the FOXC2 binding site. Accordingly, constitutively active FOXC2 did not affect DLL4 expression. The notion that the positive feed-forward mechanism might propagate NOTCH activation to neighboring ECs was supported by our observation that DLL4-eGFP-transfected ECs induced DLL4 expression in nontransfected cells in their vicinity. In summary, our data provide evidence for a mechanism by which VEGF or ligand-induced NOTCH signaling up-regulates DLL4 through a positive feed-forward mechanism. By this mechanism, DLL4 could propagate its own expression and enable synchronization of NOTCH expression and signaling between ECs.


Assuntos
Comunicação Celular/fisiologia , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Receptores Notch/metabolismo , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Ligação ao Cálcio , Células Cultivadas , Vasos Coronários/citologia , Células Endoteliais/citologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Estrutura Terciária de Proteína , Receptores Notch/genética , Fator A de Crescimento do Endotélio Vascular/genética
11.
Arterioscler Thromb Vasc Biol ; 30(11): 2188-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20814017

RESUMO

OBJECTIVE: To elucidate the downstream mechanisms of vascular endothelial growth factor receptor 2 (VEGFR2), a key receptor in angiogenesis, which has been associated with atherosclerotic plaque growth and instability. METHODS AND RESULTS: By using a yeast-2-hybrid assay, we identified A Disintegrin And Metalloprotease 10 (ADAM10) as a novel binding partner of VEGFR2. ADAM10 is a metalloprotease with sheddase activity involved in cell migration; however, its exact function in endothelial cells (ECs), angiogenesis, and atherosclerosis is largely unknown. For the first time to our knowledge, we show ADAM10 expression in human atherosclerotic lesions, associated with plaque progression and neovascularization. We demonstrate ADAM10 expression and activity in ECs to be induced by VEGF; also, ADAM10 mediates the ectodomain shedding of VEGFR2. Furthermore, VEGF induces ADAM10-mediated cleavage of vascular endothelium (VE)-cadherin, which could increase vascular permeability and facilitate EC migration. Indeed, VEGF increases vascular permeability in an ADAM10- and ADAM17-dependent way; inhibition of ADAM10 reduces EC migration and chemotaxis. CONCLUSIONS: These data provide the first evidence of ADAM10 expression in atherosclerosis and neovascularization. ADAM10 plays a functional role in VEGF-induced EC function. These data open perspectives for novel therapeutic interventions in vascular diseases.


Assuntos
Proteínas ADAM/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Aterosclerose/fisiopatologia , Células Endoteliais/fisiologia , Proteínas de Membrana/fisiologia , Neovascularização Patológica/fisiopatologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Proteínas ADAM/biossíntese , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/biossíntese , Aterosclerose/metabolismo , Células Cultivadas , Progressão da Doença , Humanos , Proteínas de Membrana/biossíntese , Neovascularização Patológica/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/fisiopatologia
12.
Nat Med ; 9(2): 173-82, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12539040

RESUMO

Hemizygous deletion of chromosome 22q11 (del22q11) causes thymic, parathyroid, craniofacial and life-threatening cardiovascular birth defects in 1 in 4,000 infants. The del22q11 syndrome is likely caused by haploinsufficiency of TBX1, but its variable expressivity indicates the involvement of additional modifiers. Here, we report that absence of the Vegf164 isoform caused birth defects in mice, reminiscent of those found in del22q11 patients. The close correlation of birth and vascular defects indicated that vascular dysgenesis may pathogenetically contribute to the birth defects. Vegf interacted with Tbx1, as Tbx1 expression was reduced in Vegf164-deficient embryos and knocked-down vegf levels enhanced the pharyngeal arch artery defects induced by tbx1 knockdown in zebrafish. Moreover, initial evidence suggested that a VEGF promoter haplotype was associated with an increased risk for cardiovascular birth defects in del22q11 individuals. These genetic data in mouse, fish and human indicate that VEGF is a modifier of cardiovascular birth defects in the del22q11 syndrome.


Assuntos
Deleção Cromossômica , Síndrome de DiGeorge/genética , Fatores de Crescimento Endotelial/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfocinas/genética , Animais , Vasos Sanguíneos/anormalidades , Anormalidades Congênitas/genética , Face/anormalidades , Camundongos , Camundongos Knockout , Neuropilina-1/genética , Isoformas de Proteínas/genética , Crânio/anormalidades , Proteínas com Domínio T/genética , Timo/anormalidades , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Peixe-Zebra
14.
J Extracell Vesicles ; 9(1): 1801153, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32944190

RESUMO

Substantial research has been devoted to discovering the translational potential of extracellular vesicles (EV) as a reliable liquid biopsy in the diagnosis and monitoring of several life-affecting diseases, including chronic inflammatory diseases (CID). So far, the role of EV in the development of CID remains largely unknown due to the lack of specific tools to separate the disease-associated EV subtypes. Therefore, this study aims to fractionate inflammation-associated EV (sub)populations using a two-step separation strategy based on their size combined with a specific inflammatory marker (ICAM-1) and to unravel their proteome signature and functional integrity at the onset of vascular inflammation. Here, we report that vascular endothelial cells upon inflammation release two heterogeneous size-based populations of EV (EV-10 K and EV-110 K) sharing a cocktail of inflammatory proteins, chemokines, and cytokines (chiefly: ICAM-1, CCL-2, CCL-4, CCL-5, IL-8 and CXCL-10). The co-enrichment of ICAM-1 and classical EV markers within these two size-based populations gave us a promising opportunity to further separate the inflammation-associated EV subpopulations, using an immuno-affinity methodology. Protein profiling of EV subpopulations highlighted that the phenotypic state of inflamed endothelial cells is preferentially mirrored in secreted medium- and large-sized ICAM-1 (+) EV. As functional players, the smaller-sized EV and especially their ICAM-1 (+) EV subpopulation promote the migration of THP-1 monocytes, whereas the large ICAM-1 (+) EV were more potent to induce ICAM-1 expression in recipient endothelial cells. This study provides new insights into the immunomodulatory content of inflammation-associated EV (sub)populations and their functional contributions to the initiation of vascular inflammation (ICAM-1 expression) and monocyte mobilization.

15.
Circ Res ; 100(6): 842-9, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17332426

RESUMO

The importance of vascular endothelial growth factor-A (VEGF) and subsequent Notch signaling in cardiac outflow tract development is generally recognized. Although genetic heterogeneity and mutations of these genes in both humans and mouse models relate to a high susceptibility to develop outflow tract malformations such as tetralogy of Fallot and peripheral pulmonary stenosis, no etiology has been proposed so far. Using immunohistochemistry, in situ hybridization, and quantitative RT-PCR on embryonic hearts, we have shown spatiotemporal increase and abnormal patterning of Vegf/VEGF/(phosphorylated) VEGFR-2, (cleaved) Notch1, and Jagged2 in the outflow tract of Vegf120/120 mouse embryos. This coincides with hyperplasia of specifically the outflow tract cushions and a high degree of subpulmonary myocardial apoptosis that, in later stages, manifest as pulmonary stenosis and ventricular septal defects. We postulate that increase of VEGF and Notch signaling during right ventricular outflow tract development can lead to abnormal development of both cushion and myocardial structures. Defective right ventricular outflow tract development as presented provides new insight in the etiology of tetralogy of Fallot.


Assuntos
Embrião de Mamíferos/anormalidades , Miocárdio/metabolismo , Receptor Notch1/genética , Transdução de Sinais/genética , Tetralogia de Fallot/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Aorta Torácica/anormalidades , Aorta Torácica/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/anormalidades , Ventrículos do Coração/patologia , Imuno-Histoquímica , Hibridização In Situ , Proteína Jagged-2 , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Miocárdio/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Cardiovasc Res ; 78(2): 366-75, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18093989

RESUMO

AIMS: Currently, many potential cardiac revascularization therapies target the vascular endothelial growth factor (VEGF) pathway, with variable success. Knowledge regarding the role of the VEGF/Notch/ephrinB2 cascade in (ab)normal coronary development will provide information on the subtle balance of VEGF signalling in coronary maturation and might enhance our therapeutic possibilities. METHODS AND RESULTS: The effect of VEGF isoforms on coronary development was explored in vivo using immunohistochemistry and RT-qPCR on Vegf120/120 mouse embryos solely expressing VEGF120. In vitro, human arterial coronary endothelial cells were treated with VEGF121 or VEGF165 upon which RT-qPCR was performed. In vivo, mutant coronary arterial endothelium showed a decrease in protein expression of arterial markers such as cleaved Notch1, Delta-like4, and ephrinB2 concomitant with an increase of venous markers such as chicken ovalbumin upstream promoter transcription factor II. The venous endothelium showed the opposite effect, which was confirmed on the mRNA level. In vitro, mRNA expression of arterial markers highly depended on the VEGF isoform used, with VEGF165 having the strongest effect. Also, coronary arteriogenesis was anomalous in the mouse embryos with decreased arterial and increased venous medial development as shown by staining for smooth muscle alpha-actin, Delta-like1, and Notch3. CONCLUSION: We demonstrate that VEGF isoform-related spatiotemporal cardiac alterations in the VEGF/Notch/ephrinB2 cascade lead to disturbed coronary development. This knowledge can contribute to optimizing therapies targeting VEGF signalling by enabling balancing between angiogenesis and vascular maturation.


Assuntos
Vasos Coronários/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Vasos Coronários/embriologia , Células Endoteliais/metabolismo , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Neovascularização Fisiológica/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/genética , Veias/embriologia , Veias/metabolismo
17.
Macromol Biosci ; 19(7): e1900090, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31166090

RESUMO

Given the major structural role phosphodiesters play in the organism it is surprising they have not been more widely adopted as a building block in sophisticated biomimetic hydrogels and other biomaterials. The potential benefits are substantial: phosphoester-based materials show excellent compatibility with blood, cells, and a remarkable resistance to protein adsorption that may trigger a foreign-body response. In this work, a novel class of phosphodiester-based ionic hydrogels is presented which are crosslinked via a phosphodiester moiety. The material shows good compatibility with blood, supports the growth and proliferation of tissue and presents opportunities for use as a drug release matrix as shown with fluorescent model compounds. The final gel is produced via base-induced elimination from a phosphotriester precursor, which is made by the free-radical polymerization of a phosphotriester crosslinker. This crosslinker is easily synthesized via multigram one-pot procedures out of common laboratory chemicals. Via the addition of various comonomers the properties of the final gel may be tuned leading to a wide range of novel applications for this exciting class of materials.


Assuntos
Liberação Controlada de Fármacos , Ésteres/química , Hidrogéis/química , Alicerces Teciduais/química , Animais , Dimetil Sulfóxido/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Liofilização , Espectroscopia de Ressonância Magnética , Teste de Materiais , Miócitos de Músculo Liso/citologia , Suínos
18.
Sci Rep ; 9(1): 12076, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427631

RESUMO

Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo.


Assuntos
Células-Tronco Mesenquimais/citologia , Morfogênese/efeitos da radiação , Neovascularização Fisiológica/efeitos da radiação , Transplantes/crescimento & desenvolvimento , Adipócitos/efeitos da radiação , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Embrião de Galinha , Meios de Cultivo Condicionados/farmacologia , Estimulação Elétrica , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/efeitos da radiação , Morfogênese/genética , Neovascularização Fisiológica/fisiologia , Células-Tronco/efeitos da radiação , Transplantes/efeitos da radiação
19.
Front Immunol ; 9: 1789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131806

RESUMO

Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) in vitro. Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator de Necrose Tumoral alfa/metabolismo
20.
Sci Rep ; 8(1): 10808, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018348

RESUMO

Isolating and maintaining the appropriate stem cell for large scale cell culture is essential in tissue engineering or food production. For bovine satellite cells an optimized isolation and purification protocol is lacking and there is also no detailed understanding on the factors that maintain stemness of these cells. Here, we set up a fluorescence-activated cell sorting strategy to enrich bovine satellite cells. We found that p38-MAPK signalling is activated and PAX7 expression is gradually lost during satellite cell proliferation. The p38 inhibitor (SB203580) treatment maintained PAX7 expression but inhibited the fusion of satellite cells in a concentration-dependent way in short-term incubation. The mechanism of p38 inhibition was confirmed by inhibiting canonical p38 signalling, i.e. HSP27. Long-term culture with an appropriate concentration of p38i enhanced the proliferation and PAX7 expression, while the differentiation capacity recovered and was enhanced compared to vehicle control. These studies indicate that bovine satellite cells maintenance depends on cell purity and p38 MAPK signalling. Inhibition of p38 MAPK signaling is a promising strategy to facilitate large scale cell expansion of primary cells for tissue engineering and cultured meat purposes.


Assuntos
Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Imidazóis/farmacologia , Masculino , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Piridinas/farmacologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA