Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918319

RESUMO

PURPOSE: To report the outcomes of a large series of intracranial meningiomas (IMs) submitted to proton therapy (PT) with curative intent. METHODS: We conducted a retrospective analysis on all consecutive IM patients treated between 2014 and 2021. The median PT prescription dose was 55.8 Gy relative biological effectiveness (RBE) and 66 GyRBE for benign/radiologically diagnosed and atypical/anaplastic IMs, respectively. Local recurrence-free survival (LRFS), distant recurrence-free survival (DRFS), overall survival (OS), and radionecrosis-free survival (RNFS) were evaluated with the Kaplan-Meier method. Univariable analysis was performed to identify potential prognostic factors for clinical outcomes. Toxicity was reported according to the latest Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS: Overall, 167 patients were included. With a median follow-up of 41 months (range, 6-99), twelve patients (7%) developed tumor local recurrence after a median time of 39 months. The 5-year LRFS was 88% for the entire cohort, with a significant difference between benign/radiologically diagnosed and atypical/anaplastic IMs (98% vs. 47%, p < 0.001); this significant difference was maintained also for the 5-year OS and the 5-year DRFS rates. Patients aged ≤ 56 years reported significantly better outcomes, whereas lower prescription doses and skull base location were associated with better RNFS rates. Two patients experienced G3 acute toxicities (1.2%), and three patients G3 late toxicities (1.8%). There were no G4-G5 adverse events. CONCLUSION: PT proved to be effective with an acceptable toxicity profile. To the best of our knowledge this is one of the largest series including IM patients submitted to PT.

2.
Future Oncol ; 19(3): 193-203, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974574

RESUMO

ICONIC is a multicenter, open-label, nonrandomized phase II clinical trial aiming to assess the feasibility and clinical activity of the addition of carbon ion radiotherapy to immune checkpoint inhibitors in cancer patients who have obtained disease stability with pembrolizumab administered as per standard-of-care. The primary end point is objective response rate, and the secondary end points are safety, survival and disease control rate. Translational research is an exploratory aim. The planned sample size is 27 patients. The study combination will be considered worth investigating if at least four objective responses are observed. If the null hypothesis is rejected, ICONIC will be the first proof of concept of the feasibility and clinical activity of the addition of carbon ion radiotherapy to immune checkpoint inhibitors in oncology.


ICONIC is a multicenter, open-label, nonrandomized, phase II clinical trial aiming to evaluate the feasibility and clinical activity of the addition of carbon ion radiotherapy to immune checkpoint inhibitors in cancer patients who have obtained disease stability with pembrolizumab administered as per standard-of-care. Considering that no clinical trials have been conducted thus far to assess the safety of the association between immune checkpoint inhibitors and carbon ion radiotherapy, the current clinical study will provide controlled data about the safety of this unprecedented therapeutic combination. Clinical Trial Registration: NCT05229614 (ClinicalTrials.gov).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Radioterapia com Íons Pesados , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Radioterapia com Íons Pesados/efeitos adversos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto , Estudos de Viabilidade , Estudo de Prova de Conceito
3.
BMC Cancer ; 19(1): 922, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521134

RESUMO

BACKGROUND: Pancreatic adenocarcinoma is a high-mortality neoplasm with a documented 5-years-overall survival around 5%. In the last decades, a real breakthrough in the treatment of the disease has not been achieved. Here we propose a prospective, phase II, multicentre, single-arm study aiming to assess the efficacy and the feasibility of a therapeutic protocol combining chemotherapy, carbon ion therapy and surgery for resectable and borderline resectable pancreatic adenocarcinoma. METHOD: The purpose of this trial (PIOPPO Protocol) is to assess the efficacy and the feasibility of 3 cycles of FOLFIRINOX neoadjuvant chemotherapy followed by a short-course of carbon ion radiotherapy (CIRT) for resectable or borderline resectable pancreatic adenocarcinoma patients. Primary outcome of this study is the assessment of local progression free survival (L-PFS). The calculation of sample size is based on the analysis of the primary endpoint "progression free survival" according to Fleming's Procedure. DISCUSSION: Very preliminary results provide initial evidence of the feasibility of the combined chemotherapy and CIRT in the neoadjuvant setting for resectable or borderline resectable pancreatic cancer. Completion of the accrual and long term results are awaited to see if this combination of treatment is advisable and will provide the expected benefits. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03822936 registered on January 2019.


Assuntos
Adenocarcinoma/patologia , Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos Clínicos , Radioterapia com Íons Pesados , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Terapia Combinada , Feminino , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Humanos , Masculino , Estadiamento de Neoplasias , Cuidados Pré-Operatórios
4.
J Appl Clin Med Phys ; 16(2): 5227, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103195

RESUMO

The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treatment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive components along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.


Assuntos
Simulação por Computador , Neoplasias Oculares/radioterapia , Melanoma/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/normas , Síncrotrons/instrumentação , Síncrotrons/normas , Neoplasias Uveais/radioterapia , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Radiol Med ; 119(4): 277-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337759

RESUMO

PURPOSE: The Italian National Centre for Oncological Hadrontherapy (Centro Nazionale di Adroterapia Oncologica, CNAO), equipped with a proton and ion synchrotron, started clinical activity in September 2011. The clinical and technical characteristics of the first ten proton beam radiotherapy treatments are reported. MATERIALS AND METHODS: Ten patients, six males and four females (age range 27-73 years, median 55.5), were treated with proton beam radiotherapy. After one to two surgical procedures, seven patients received a histological diagnosis of chordoma (of the skull base in three cases, the cervical spine in one case and the sacrum in three cases) and three of low-grade chondrosarcoma (skull base). Prescribed doses were 74 GyE for chordoma and 70 GyE for chondrosarcoma at 2 GyE/fraction delivered 5 days per week. RESULTS: Treatment was well tolerated without toxicity-related interruptions. The maximal acute toxicity was grade 2, with oropharyngeal mucositis, nausea and vomiting for the skull base tumours, and grade 2 dermatitis for the sacral tumours. After 6-12 months of follow-up, no patient developed tumour progression. CONCLUSIONS: The analysis of the first ten patients treated with proton therapy at CNAO showed that this treatment was feasible and safe. Currently, patient accrual into these as well as other approved protocols is continuing, and a longer follow-up period is needed to assess tumour control and late toxicity.


Assuntos
Condrossarcoma/radioterapia , Cordoma/radioterapia , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Coluna Vertebral/radioterapia , Adulto , Idoso , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Itália , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Assistida por Computador , Síncrotrons , Tomografia Computadorizada por Raios X
6.
Phys Imaging Radiat Oncol ; 29: 100553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38419802

RESUMO

Background and Purpose: Nuclear interaction correction (NIC) and trichrome fragment spectra modelling improve relative biological effectiveness-weighted dose (DRBE) and dose-averaged linear energy transfer (LETd) calculation for carbon ions. The effect of those novel approaches on the clinical dose and LET distributions was investigated. Materials and Methods: The effect of the NIC and trichrome algorithm was assessed, creating single beam plans for a virtual water phantom with standard settings and NIC + trichrome corrections. Reference DRBE and LETd distributions were simulated using FLUKA version 2021.2.9. Thirty clinically applied scanned carbon ion treatment plans were recalculated applying NIC, trichrome and NIC + trichrome corrections, using the LEM low dose approximation and compared to clinical plans (base RS). Four treatment sites were analysed: six prostate adenocarcinoma, ten head and neck, nine locally advanced pancreatic adenocarcinoma and five sacral chordoma. The FLUKA and clinical plans were compared in terms of DRBE deviations for D98%, D50%, D2% for the clinical target volume (CTV) and D50% in ring-like dose regions retrieved from isodose curves in base RS plans. Additionally, region-based median LETd deviations and global gamma parameters were evaluated. Results: Dose deviations comparing base RS and evaluation plans were within ± 1% supported by γ-pass rates over 97% for all cases. No significant LETd deviations were reported in the CTV, but significant median LETd deviations were up to 80% for very low dose regions. Conclusion: Our results showed improved accuracy of the predicted DRBE and LETd. Considering clinically relevant constraints, no significant modifications of clinical protocols are expected with the introduction of NIC + trichrome.

7.
Tumori ; 110(2): 132-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183176

RESUMO

INTRODUCTION: Preserving the endocrine and reproductive function in young female cancer patients undergoing pelvic radiation is a significant challenge. While the photon beam radiation's adverse effects on the uterus and ovaries are well established, the impact of pelvic carbon ion radiotherapy on women's reproductive function is largely unexplored. Strategies such as oocyte cryopreservation and ovarian transposition are commonly recommended for safeguarding future fertility. METHODS: This study presents a pioneering case of successful pregnancy after carbon ion radiotherapy for locally advanced sacral chondrosarcoma. RESULTS: A multidisciplinary approach facilitated the displacement of ovaries and uterus before carbon ion radiotherapy, resulting in the preservation of endocrine and reproductive function. CONCLUSION: The patient achieved optimal oncological response and delivered a healthy infant following the completion of cancer treatment.


Assuntos
Preservação da Fertilidade , Radioterapia com Íons Pesados , Feminino , Humanos , Gravidez , Criopreservação/métodos , Fertilidade/fisiologia , Preservação da Fertilidade/métodos , Radioterapia com Íons Pesados/efeitos adversos , Ovário , Adulto
8.
Phys Med ; 107: 102561, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36898300

RESUMO

PURPOSE: To fully characterize the flat panel detector of the new Sphinx Compact device with scanned proton and carbon ion beams. MATERIALS AND METHODS: The Sphinx Compact is designed for daily QA in particle therapy. We tested its repeatability and dose rate dependence as well as its proportionality with an increasing number of particles and potential quenching effect. Potential radiation damage was evaluated. Finally, we compared the spot characterization (position and profile FWHM) with our radiochromic EBT3 film baseline. RESULTS: The detector showed a repeatability of 1.7% and 0.9% for single spots of protons and carbon ions, respectively, while for small scanned fields it was inferior to 0.2% for both particles. The response was independent from the dose rate (difference from nominal value < 1.5%). We observed an under-response due to quenching effect for both particles, mostly for carbon ions. No radiation damage effects were observed after two months of weekly use and approximately 1350 Gy delivered to the detector. Good agreement was found between the Sphinx and EBT3 films for the spot position (central-axis deviation within 1 mm). The spot size measured with the Sphinx was larger compared to films. For protons, the average and maximum differences over different energies were 0.4 mm (3%) and 1 mm (7%); for carbon ions they were 0.2 mm (4%) and 0.4 mm (6%). CONCLUSIONS: Despite the quenching effect the Sphinx Compact fulfills the requirements needed for constancy checks and could represent a time-saving tool for daily QA in scanned particle beams.


Assuntos
Terapia com Prótons , Prótons , Radiometria , Carbono , Dosimetria Fotográfica
9.
Bioengineering (Basel) ; 10(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36829745

RESUMO

The generation of synthetic CT for carbon ion radiotherapy (CIRT) applications is challenging, since high accuracy is required in treatment planning and delivery, especially in an anatomical site as complex as the abdomen. Thirty-nine abdominal MRI-CT volume pairs were collected and a three-channel cGAN (accounting for air, bones, soft tissues) was used to generate sCTs. The network was tested on five held-out MRI volumes for two scenarios: (i) a CT-based segmentation of the MRI channels, to assess the quality of sCTs and (ii) an MRI manual segmentation, to simulate an MRI-only treatment scenario. The sCTs were evaluated by means of similarity metrics (e.g., mean absolute error, MAE) and geometrical criteria (e.g., dice coefficient). Recalculated CIRT plans were evaluated through dose volume histogram, gamma analysis and range shift analysis. The CT-based test set presented optimal MAE on bones (86.03 ± 10.76 HU), soft tissues (55.39 ± 3.41 HU) and air (54.42 ± 11.48 HU). Higher values were obtained from the MRI-only test set (MAEBONE = 154.87 ± 22.90 HU). The global gamma pass rate reached 94.88 ± 4.9% with 3%/3 mm, while the range shift reached a median (IQR) of 0.98 (3.64) mm. The three-channel cGAN can generate acceptable abdominal sCTs and allow for CIRT dose recalculations comparable to the clinical plans.

10.
Cancers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894434

RESUMO

BACKGROUND: Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS: To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS: The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS: After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.

11.
Med Phys ; 49(12): 7802-7814, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36196033

RESUMO

BACKGROUND: With rapid evolutions of fast and sophisticated calculation techniques and delivery technologies, clinics are almost facing a daily patient-specific (PS) plan adaptation, which would make a conventional experimental quality assurance (QA) workflow unlikely to be routinely feasible. Therefore, in silico approaches are foreseen by means of second-check independent dose calculation systems possibly handling machine log-files. PURPOSE: To validate the in-house developed GPU-dose engine, FRoG, for light ion beam therapy (protons and carbon ions) as a second-check independent calculation system and to integrate machine log-file analysis into the patient-specific quality assurance (PSQA) program. METHODS: Spot sizes, depth-dose distributions, and absolute dose calibrations were configured into FRoG and a set of nine regular-shaped targets in combination with more than 170 clinical treatment fields were tested against pinpoint ionization chamber measurements. Both the treatment planning system DICOM RTplans and machine treatment log-files were used as input for the dose kernel in water, and a 3D local γ (1 mm/2%) index was used as the main evaluation metric. RESULTS: Calculated configuration data matched experimental measurements with submillimetric agreement. For regular-shaped targets, the unsigned average relative difference between calculated and measured dose values was less than 2% for both protons and carbon ions. The mean γ passing rate (PR) was around 98% for both particle species. For clinical treatment beams, DICOM-based recalculations showed a γ-PR more than 99% for both particle species. The same level of agreement was preserved for protons when moving to log-file-based recalculations. A score of around 95% was registered for carbon ion beams, once excluding low-quality machine log-files. Unsigned average relative difference against acquired data was less than 2% also for real clinical beams. CONCLUSIONS: FRoG was proven as an accurate and reliable tool for PSQA in scanning light ion beam therapy. The proposed method allows for an extremely efficient workflow, without compromising the quality of the plan verification procedure.


Assuntos
Prótons , Radiometria , Humanos , Dosagem Radioterapêutica , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Método de Monte Carlo
12.
Z Med Phys ; 32(1): 98-108, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33069586

RESUMO

PURPOSE: To generate virtual 4DCT from 4DMRI with field of view (FOV) extended to the entire involved patient anatomy, in order to evaluate its use in carbon ion radiation therapy (CIRT) of the abdominal site in a clinical scenario. MATERIALS AND METHODS: The virtual 4DCT was generated by deforming a reference CT in order to (1) match the anatomy depicted in the 4DMRI within its FOV, by calculating deformation fields with deformable image registration to describe inter-fractional and breathing motion, and (2) obtain physically plausible deformation outside of the 4DMRI FOV, by propagating and modulating the previously obtained deformation fields. The implemented method was validated on a digital anthropomorphic phantom, for which a ground truth (GT) 4DCT was available. A CIRT treatment plan was optimized at the end-exhale reference CT and the RBE-weighted dose distribution was recalculated on both the virtual and GT 4DCTs. The method estimation error was quantified by comparing the virtual and GT 4DCTs and the corresponding recomputed doses. The method was then evaluated on 8 patients with pancreas or liver tumors treated with CIRT using respiratory gating at end-exhale. The clinical treatment plans adopted at the National Center for Oncological Hadrontherapy (CNAO, Pavia, Italy) were considered and the dose distribution was recomputed on all respiratory phases of the planning and virtual 4DCTs. By comparing the two datasets and the corresponding dose distributions, the geometrical and dosimetric impact of organ motion was assessed. RESULTS: For the phantom, the error outside of the 4DMRI FOV was up to 4.5mm, but it remained sub-millimetric in correspondence to the target within the 4DMRI FOV. Although the impact of motion on the target D95% resulted in variations ranging from 22% to 90% between the planned dose and the doses recomputed on the GT 4DCT phases, the corresponding estimation error was ≤2.2%. In the patient cases, the variation of the baseline tumor position between the planning and the virtual end-exhale CTs presented a median (interquartile range) value of 6.0 (4.9) mm. For baseline variations larger than 5mm, the tumor D95% variation between the plan and the dose recomputed on the end-exhale virtual CT resulted larger than 10%. Median variations higher than 10% in the target D95% and gastro-intestinal OARs D2% were quantified at the end-inhale, whereas close to the end-exhale phase, limited variations of relevant dose metrics were found for both tumor and OARs. CONCLUSIONS: The negligible impact of the geometrical inaccuracy in the estimated anatomy outside of the 4DMRI FOV on the overall dosimetric accuracy suggests the feasibility of virtual 4DCT with extended FOV in CIRT of the abdominal site. In the analyzed patient group, inter-fractional variations such as baseline variation and breathing variability were quantified, demonstrating the method capability to support treatment planning in gated CIRT of the abdominal site.


Assuntos
Neoplasias Abdominais , Radioterapia com Íons Pesados , Neoplasias Pulmonares , Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Neoplasias Pulmonares/radioterapia , Movimento , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos
13.
Radiother Oncol ; 176: 1-8, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113776

RESUMO

PURPOSE /OBJECTIVE: To quantify benefits of robust optimization on multiple 4DCT acquisitions combined with off-line treatment adaptation for neoadjuvant carbon ion therapy (CIRT) of pancreatic cancer. MATERIAL/METHODS: For 10 previously treated patients, 4DCTs were acquired around -15 (CTPlan), -5 (RE1), -1 (RE2) and +6 (RE3) days from RT start. Treatment plans were newly optimized to a dose prescription of 38.4 Gy(RBE) (8 fractions) with a constraint of 38 Gy(RBE) to 1% of the gastrointestinal organs at risk volume (D1%). Three strategies were tested: (A) robust optimization on CTPlan maximum exhale (0Ex) with 3 mm set-up, 3% range uncertainty, including 30%-inhale; (B) addition of the RE1-0Ex scenario; (C) plan recalculation at each REi and adaptation (RPi) according to deviation thresholds from clinical goals. The cumulative variation of target coverage and GI-OARs doses was evaluated. Duodenum contours of all 4DCTs of each patient were registered on CTPlan-0Ex. The capacity of pre-RT acquisitions to predict duodenum position was investigated by computing the intersection of contours at CTplan, RE1, or their union, with respect to subsequent 4DCTs and the CTV, coupled with increasing margin. RESULTS: (A) No recalculation exceeded the D1% constraint. (B) The inclusion of RE1-0Ex in the optimization problem improved inter-fraction robustness on a patient-specific basis, but was non-significant on average. (C) Half of the plans would be re-optimized to recover target coverage and/or minimize duodenum dose, at least once. A significant difference was observed between pre-RT duodenum contours when intersecting subsequent contours, either with a margin expansion. CONCLUSION: Anatomical variations highlighted at multiple REi proved that a fast and efficient online adaptation is essential to optimize treatment quality of CIRT for pancreatic cancer.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Pancreáticas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Órgãos em Risco , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Terapia com Prótons/métodos , Neoplasias Pancreáticas
14.
Cancers (Basel) ; 14(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681661

RESUMO

(1) Background: In this work, we aim to provide selection criteria based on normal tissue complication probability (NTCP) models and additional explanatory dose-volume histogram parameters suitable for identifying locally advanced sinonasal cancer patients with orbital invasion benefitting from proton therapy. (2) Methods: Twenty-two patients were enrolled, and two advanced radiation techniques were compared: intensity modulated proton therapy (IMPT) and photon volumetric modulated arc therapy (VMAT). Plans were optimized with a simultaneous integrated boost modality: 70 and 56 Gy(RBE) in 35 fractions were prescribed to the high risk/low risk CTV. Several endpoints were investigated, classified for their severity and used as discriminating paradigms. In particular, when NTCP models were already available, a first selection criterion based on the delta-NTCP was adopted. Additionally, an overall analysis in terms of DVH parameters was performed. Furthermore, a second selection criterion based on a weighted sum of the ΔNTCP and ΔDVH was adopted. (3) Results: Four patients out of 22 (18.2%) were suitable for IMPT due to ΔNTCP > 3% for at least one severe toxicity, 4 (18.2%) due to ΔNTCP > 20% for at least three concurrent intermediate toxicities and 16 (72.7%) due to the mixed sum of ΔNTCP and ΔDVH criterion. Since, for some cases, both criteria were contemporary fulfilled, globally 17/22 patients (77.3%) would benefit from IMPT. (4) Conclusions: For this rare clinical scenario, the use of a strategy including DVH parameters and NTCPs when comparing VMAT and IMPT is feasible. We showed that patients affected by sinonasal cancer could profit from IMPT compared to VMAT in terms of optical and central nervous system organs at risk sparing.

15.
Med Phys ; 49(4): 2386-2395, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35124811

RESUMO

PURPOSE: In this study, we investigate the use of magnetic resonance imaging (MRI) for the clinical evaluation of gating treatment robustness in carbon-ion radiotherapy (CIRT) of pancreatic cancer. Indeed, MRI allows radiation-free repeated scans and fast dynamic sequences for time-resolved (TR) imaging (cine-MRI), providing information on inter- and intra-fraction cycle-to-cycle variations of respiratory motion. MRI can therefore support treatment planning and verification, overcoming the limitations of the current clinical standard, that is, four-dimensional computed tomography (4DCT), which describes an "average" breathing cycle neglecting breathing motion variability. METHODS: We integrated a technique to generate a virtual CT (vCT) from 3D MRI with a method for 3D reconstruction from 2D cine-MRI, to produce TR vCTs for dose recalculations. For eight patients, the method allowed evaluating inter-fraction variations at end-exhale and intra-fraction cycle-to-cycle variability within the gating window in terms of tumor displacement and dose to the target and organs at risk. RESULTS: The median inter-fraction tumor motion was in the range 3.33-12.16 mm, but the target coverage was robust (-0.4% median D95% variation). Concerning cycle-to-cycle variations, the gating technique was effective in limiting tumor displacement (1.35 mm median gating motion) and corresponding dose variations (-3.9% median D95% variation). The larger exposure of organs at risk (duodenum and stomach) was caused by inter-fraction motion, whereas intra-fraction cycle-to-cycle dose variations were limited. CONCLUSIONS: This study proposed a method for the generation of TR vCTs from MRI, which enabled an off-line evaluation of gating treatment robustness and suggested its feasibility to support treatment planning of pancreatic tumors in CIRT.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Pancreáticas , Carbono , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Imageamento por Ressonância Magnética , Movimento , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Neoplasias Pancreáticas
16.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267415

RESUMO

(1) Background: we proposed an integrated strategy to support clinical allocation of nasopharyngeal patients between proton and photon radiotherapy. (2) Methods: intensity-modulated proton therapy (IMPT) plans were optimized for 50 consecutive nasopharyngeal carcinoma (NPC) patients treated with volumetric modulated arc therapy (VMAT), and differences in dose and normal tissue complication probability (ΔNTCPx-p) for 16 models were calculated. Patient eligibility for IMPT was assessed using a model-based selection (MBS) strategy following the results for 7/16 models describing the most clinically relevant endpoints, applying a model-specific ΔNTCPx-p threshold (15% to 5% depending on the severity of the complication) and a composite threshold (35%). In addition, a comprehensive toxicity score (CTS) was defined as the weighted sum of all 16 ΔNTCPx-p, where weights follow a clinical rationale. (3) Results: Dose deviations were in favor of IMPT (ΔDmean ≥ 14% for cord, esophagus, brainstem, and glottic larynx). The risk of toxicity significantly decreased for xerostomia (-12.5%), brain necrosis (-2.3%), mucositis (-3.2%), tinnitus (-8.6%), hypothyroidism (-9.3%), and trismus (-5.4%). There were 40% of the patients that resulted as eligible for IMPT, with a greater advantage for T3-T4 staging. Significantly different CTS were observed in patients qualifying for IMPT. (4) Conclusions: The MBS strategy successfully drives the clinical identification of NPC patients, who are most likely to benefit from IMPT. CTS summarizes well the expected global gain.

17.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36612029

RESUMO

Carbon Ion Radiotherapy (CIRT) is one of the most promising therapeutic options to reduce Local Recurrence (LR) in Sacral Chordomas (SC). The aim of this work is to compare the performances of survival models fed with dosiomics features and conventional DVH metrics extracted from relative biological effectiveness (RBE)-weighted dose (DRBE) and dose-averaged Linear Energy Transfer (LETd) maps, towards the identification of possible prognostic factors for LR in SC patients treated with CIRT. This retrospective study included 50 patients affected by SC with a focus on patients that presented a relapse in a high-dose region. Survival models were built to predict both LR and High-Dose Local Recurrencies (HD-LR). The models were evaluated through Harrell Concordance Index (C-index) and patients were stratified into high/low-risk groups. Local Recurrence-free Kaplan-Meier curves were estimated and evaluated through log-rank tests. The model with highest performance (median(interquartile-range) C-index of 0.86 (0.22)) was built on features extracted from LETd maps, with DRBE models showing promising but weaker results (C-index of 0.83 (0.21), 0.80 (0.21)). Although the study should be extended to a wider patient population, LETd maps show potential as a prognostic factor for SC HD-LR in CIRT, and dosiomics appears to be the most promising approach against more conventional methods (e.g., DVH-based).

18.
Front Oncol ; 12: 829502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311095

RESUMO

Background: The present study aims to evaluate dosimetric and clinical risk factors for the development of maxillary osteoradionecrosis (ORN) in head and neck adenoid cystic carcinoma (ACC) patients treated with carbon ion radiotherapy (CIRT). Methods: Clinical data and treatment plans of ACC patients, consecutively treated from January 2013 to September 2016 within the phase II clinical trial CNAO S9/2012/C, were retrospectively reviewed. ORN and other treatment-related toxicity were graded according to the Common Terminology Criteria for Adverse Events (CTACE), version 4.0. The maxillary bone was contoured on the planning CT, and only patients receiving more than 10% of the prescription dose at their maxilla were considered for the analysis (67 patients). The volumes of maxilla receiving doses from 10 Gy (RBE) to 60 Gy (RBE) (VD), with an increment of 10 Gy (RBE), and additional clinical factors were correlated to the incidence of ORN with univariate analysis (Chi-square test). The logistic regression model was subsequently applied for multivariate analysis. Treatment plans calculated with a local effect model (LEM)-based optimization were recalculated with the modified microdosimetric kinetic model (MKM), and compared with literature data from the Japanese experience. Results: The median time interval from the start of CIRT to ORN appearance was 24 months (range, 8-54 months). Maxillary ORN was observed in 11 patients (16.4%). Grade 1 ORN was observed in 2 patients (18.1%), G2 in 4 (36.3%), G3 in 4 (36.3%) and G4 in 1 (9.3%). From univariate analysis, the site of the tumor, the presence of teeth within the PTV and acute mucositis correlated with the development of maxillary ORN. VD were significantly higher for all the dose levels tested in patients with maxillary ORN than patients without necrosis, according to both radiobiological models. The multivariate analysis showed that V60 significantly correlated with ORN risk. Conclusion: The volume of maxilla irradiated with high dose values was relevant for ORN development in our cohort of ACC patients. These results are in line with previously published data obtained with a different radiobiological model. Our findings might be helpful to prevent the risk of ORN in patients receiving CIRT.

19.
Radiother Oncol ; 169: 77-85, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189152

RESUMO

4D multi-image-based (4DMIB) optimization is a form of robust optimization where different uncertainty scenarios, due to anatomy variations, are considered via multiple image sets (e.g., 4DCT). In this review, we focused on providing an overview of different 4DMIB optimization implementations, introduced various frameworks to evaluate the robustness of scanned particle therapy affected by breathing motion and summarized the existing evidence on the necessity of using 4DMIB optimization clinically. Expected potential benefits of 4DMIB optimization include more robust and/or interplay-effect-resistant doses for the target volume and organs-at-risk for indications affected by anatomical variations (e.g., breathing, peristalsis, etc.). Although considerable literature is available on the research and technical aspects of 4DMIB, clinical studies are rare and often contain methodological limitations, such as, limited patient number, motion amplitude, motion and delivery time structure considerations, number of repeat CTs, etc. Therefore, the data are not conclusive. In addition, multiple studies have found that robust 3D optimized plans result in dose distributions within the set clinical tolerances and, therefore, are suitable for a treatment of moving targets with scanned particle therapy. We, therefore, consider the clinical necessity of 4DMIB optimization, when treating moving targets with scanned particle therapy, as still to be demonstrated.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Movimento (Física) , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração
20.
Radiother Oncol ; 163: 209-214, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506829

RESUMO

PURPOSE/OBJECTIVE: To understand the role of relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LETd) distributions in the treatment of sacral chordoma (SC) patients with carbon ion radiotherapy (CIRT). MATERIAL/METHODS: Clinical plans of 50 SC patients consecutively treated before August 2018 with a local effect model-based optimization were recalculated with the modified microdosimetric kinetic RBE model (mMKM). Twenty-six patients were classified as progressive disease and the relapse volume was contoured on the corresponding follow-up diagnostic sequence. The remaining 24 patients populated the control group. Target prescription dose (DRBE|50%), near-to-minimum- (DRBE|95%) and near-to-maximum- (DRBE|2%) doses were compared between the two cohorts in both RBE systems. LETd distribution was evaluated for in-field relapsed cases with respect to the control group. RESULTS: Target DMKM|50% and DMKM|95% were respectively 10% and 18% lower than what we aimed at. Dosimetric evaluators showed no significant difference, in neither of the RBE frameworks, between relapsed and control sets. Half of the relapse volumes were located in a well-covered high dose region. On average, over these cases, median target LETd was significantly lower than the control cohort mean value (27 vs 30 keV/µm). Most notably, the volume receiving dose from high-LET particles (>50 keV/µm) lay substantially below recently reported data in the literature. CONCLUSION: A combined multi model RBE- and LET-based optimization could play a key role in the enhancement of the therapeutic ratio of CIRT for large radioresistant tumors such as sacral chordomas.


Assuntos
Cordoma , Radioterapia com Íons Pesados , Terapia com Prótons , Carbono , Cordoma/radioterapia , Humanos , Recidiva Local de Neoplasia/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA