Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 103(5): 917-929, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804411

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) mainly results from mutations in the PKD1 gene, which encodes polycystin 1. It is the most common inherited kidney disease and is characterized by a progressive bilateral increase in cyst number and size, often leading to kidney failure. The cellular energy sensor and regulator adenosine monophosphate stimulated protein kinase (AMPK) has been implicated as a promising new therapeutic target. To address this hypothesis, we determined the effects of a potent and selective clinical stage direct allosteric AMPK activator, PXL770, in canine and patient-derived 3D cyst models and an orthologous mouse model of ADPKD. PXL770 induced AMPK activation and dose-dependently reduced cyst growth in principal-like Madin-Darby Canine Kidney cells stimulated with forskolin and kidney epithelial cells derived from patients with ADPKD stimulated with desmopressin. In an inducible, kidney epithelium-specific Pkd1 knockout mouse model, PXL770 produced kidney AMPK pathway engagement, prevented the onset of kidney failure (reducing blood urea by 47%), decreased cystic index by 26% and lowered the kidney weight to body weight ratio by 35% compared to untreated control Pkd1 knockout mice. These effects were accompanied by a reduction of markers of cell proliferation (-48%), macrophage infiltration (-53%) and tissue fibrosis (-37%). Thus, our results show the potential of direct allosteric AMPK activation in the treatment of ADPKD and support the further development of PXL770 for this indication.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Insuficiência Renal , Camundongos , Animais , Cães , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Camundongos Knockout , Insuficiência Renal/metabolismo , Progressão da Doença , Cistos/tratamento farmacológico , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
2.
J Hepatol ; 78(5): 914-925, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804402

RESUMO

BACKGROUND & AIMS: Pioglitazone (Pio) is efficacious in NASH, but its utility is limited by PPARγ-driven side effects. Pio is a mixture of two enantiomers (R, S). PXL065, deuterium-stabilized R-Pio, lacks PPARγ activity but retains non-genomic activity. We tested the hypothesis that PXL065 would have similar efficacy but a better safety profile than Pio in patients with NASH. METHODS: Patients (≥8% liver fat, NAFLD activity score [NAS] ≥4, F1-F3) received daily doses of PXL065 (7.5, 15, 22.5 mg) or placebo 1:1:1:1 for 36 weeks. The primary endpoint was relative % change in liver fat content (LFC) on MRI-proton density fat fraction; liver histology, non-invasive tests, safety-tolerability, and pharmacokinetics were also assessed. RESULTS: One hundred and seventeen patients were evaluated. All PXL065 groups met the primary endpoint (-21 to -25% LFC, p = 0.008-0.02 vs. placebo); 40% (22.5 mg) achieved a ≥30% LFC reduction. Favorable trends in non-invasive tests including reductions in PIIINP (p = 0.02, 22.5 mg) and NAFLD fibrosis score (p = 0.04, 22.5 mg) were observed. On histology (n = 92), a ≥1 stage fibrosis improvement occurred in 40% (7.5 mg), 50% (15 mg, p = 0.06), and 35% (22.5 mg) vs. 17% for placebo; up to 50% of PXL065-treated patients achieved a ≥2 point NAS improvement without fibrosis worsening vs. 30% with placebo. Metabolic improvements included: HbA1c (-0.41% p = 0.003) and insulin sensitivity (HOMA-IR, p = 0.04; Adipo-IR, p = 0.002). Adiponectin increased (+114%, 22.5 mg, p <0.0001) vs. placebo. There was no dose-dependent effect on body weight or PXL065-related peripheral oedema signal. Overall, PXL065 was safe and well tolerated. Pharmacokinetics confirmed dose-proportional and higher steady state R- vs. S-Pio exposure. IMPACT AND IMPLICATIONS: Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease. CONCLUSIONS: PXL065 is a novel molecule which retains an efficacy profile in NASH similar to Pio with reduced potential for PPARγ-driven side effects. A pivotal clinical trial is warranted to confirm the histological benefits reported herein. IMPACT AND IMPLICATIONS: Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Pioglitazona/uso terapêutico , Deutério/metabolismo , Deutério/uso terapêutico , PPAR gama , Fígado/patologia , Fibrose , Diabetes Mellitus/metabolismo , Método Duplo-Cego
3.
J Pharmacol Exp Ther ; 382(2): 208-222, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764327

RESUMO

X-linked adrenoleukodystrophy (ALD) is a severe orphan disease caused by mutations in the peroxisomal ABCD1 transporter gene, leading to toxic accumulation of Very Long-Chain Fatty Acids (VLCFA - in particular C26:0) resulting in inflammation, mitochondrial dysfunction and demyelination. AMP-activated protein kinase (AMPK) is downregulated in ALD, and its activation is implicated as a therapeutic target. PXL770 is the first direct allosteric AMPK activator with established clinical efficacy and tolerability. Methods: We investigated its effects in ALD patient-derived fibroblasts/lymphocytes and Abcd1 KO mouse glial cells. Readouts included VLCFA levels, mitochondrial function and mRNA levels of proinflammatory genes and compensatory transporters (ABCD2-3). After PXL770 treatment in Abcd1 KO mice, we assessed VLCFA levels in tissues, sciatic nerve axonal morphology by electronic microscopy and locomotor function by open-field/balance-beam tests. Results: In patients' cells and Abcd1 KO glial cells, PXL770 substantially decreased C26:0 levels (by ∼90%), improved mitochondrial respiration, reduced expression of multiple inflammatory genes and induced expression of ABCD2-3 In Abcd1 KO mice, PXL770 treatment normalized VLCFA in plasma and significantly reduced elevated levels in brain (-25%) and spinal cord (-32%) versus untreated (P < 0.001). Abnormal sciatic nerve axonal morphology was also improved along with amelioration of locomotor function. Conclusion: Direct AMPK activation exerts beneficial effects on several hallmarks of pathology in multiple ALD models in vitro and in vivo, supporting clinical development of PXL770 for this disease. Further studies would be needed to overcome limitations including small sample size for some parameters, lack of additional in vivo biomarkers and incomplete pharmacokinetic characterization. SIGNIFICANCE STATEMENT: Adrenoleukodystrophy is a rare and debilitating condition with no approved therapies, caused by accumulation of very long-chain fatty acids. AMPK is downregulated in the disease and has been implicated as a potential therapeutic target. PXL770 is a novel clinical stage direct AMPK activator. In these studies, we used PXL770 to achieve preclinical validation of direct AMPK activation for this disease - based on correction of key biochemical and functional readouts in vitro and in vivo, thus supporting clinical development.


Assuntos
Adrenoleucodistrofia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Monofosfato de Adenosina , Adenilato Quinase/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos
4.
J Inherit Metab Dis ; 45(4): 832-847, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510808

RESUMO

X-linked adrenoleukodystrophy (ALD) results from ABCD1 gene mutations which impair Very Long Chain Fatty Acids (VLCFA; C26:0 and C24:0) peroxisomal import and ß-oxidation, leading to accumulation in plasma and tissues. Excess VLCFA drives impaired cellular functions (e.g. disrupted mitochondrial function), inflammation, and neurodegeneration. Major disease phenotypes include: adrenomyeloneuropathy (AMN), progressive spinal cord axonal degeneration, and cerebral ALD (C-ALD), inflammatory white matter demyelination and degeneration. No pharmacological treatment is available to-date for ALD. Pioglitazone, an anti-diabetic thiazolidinedione, exerts potential benefits in ALD models. Its mechanisms are genomic (PPARγ agonism) and nongenomic (mitochondrial pyruvate carrier-MPC, long-chain acyl-CoA synthetase 4-ACSL4, inhibition). However, its use is limited by PPARγ-driven side effects (e.g. weight gain, edema). PXL065 is a clinical-stage deuterium-stabilized (R)-enantiomer of pioglitazone which lacks PPARγ agonism but retains MPC activity. Here, we show that incubation of ALD patient-derived cells (both AMN and C-ALD) and glial cells from Abcd1-null mice with PXL065 resulted in: normalization of elevated VLCFA, improved mitochondrial function, and attenuated indices of inflammation. Compensatory peroxisomal transporter gene expression was also induced. Additionally, chronic treatment of Abcd1-null mice lowered VLCFA in plasma, brain and spinal cord and improved both neural histology (sciatic nerve) and neurobehavioral test performance. Several in vivo effects of PXL065 exceeded those achieved with pioglitazone. PXL065 was confirmed to lack PPARγ agonism but retained ACSL4 activity of pioglitazone. PXL065 has novel actions and mechanisms and exhibits a range of potential benefits in ALD models; further testing of this molecule in ALD patients is warranted.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Deutério/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados , Inflamação , Camundongos , Camundongos Knockout , PPAR gama/metabolismo , Pioglitazona
5.
Diabetes Obes Metab ; 23(3): 664-673, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33269554

RESUMO

Imeglimin is an investigational first-in-class novel oral agent for the treatment of type 2 diabetes (T2D). Several pivotal phase III trials have been completed with evidence of statistically significant glucose lowering and a generally favourable safety and tolerability profile, including the lack of severe hypoglycaemia. Imeglimin's mechanism of action involves dual effects: (a) amplification of glucose-stimulated insulin secretion (GSIS) and preservation of ß-cell mass; and (b) enhanced insulin action, including the potential for inhibition of hepatic glucose output and improvement in insulin signalling in both liver and skeletal muscle. At a cellular and molecular level, Imeglimin's underlying mechanism may involve correction of mitochondrial dysfunction, a common underlying element of T2D pathogenesis. It has been observed to rebalance respiratory chain activity (partial inhibition of Complex I and correction of deficient Complex III activity), resulting in reduced reactive oxygen species formation (decreasing oxidative stress) and prevention of mitochondrial permeability transition pore opening (implicated in preventing cell death). In islets derived from diseased rodents with T2D, Imeglimin also enhances glucose-stimulated ATP generation and induces the synthesis of nicotinamide adenine dinucleotide (NAD+ ) via the 'salvage pathway'. In addition to playing a key role as a mitochondrial co-factor, NAD+ metabolites may contribute to the increase in GSIS (via enhanced Ca++ mobilization). Imeglimin has also been shown to preserve ß-cell mass in rodents with T2D. Overall, Imeglimin appears to target a key root cause of T2D: defective cellular energy metabolism. This potential mode of action is unique and has been shown to differ from that of other major therapeutic classes, including biguanides, sulphonylureas and glucagon-like peptide-1 receptor agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Insulina , Triazinas
6.
Physiol Rep ; 10(5): e15151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274817

RESUMO

The global prevalence of type 2 diabetes (T2D) is expected to exceed 642 million people by 2040. Metformin is a widely used biguanide T2D therapy, associated with rare but serious events of lactic acidosis, in particular with predisposing conditions (e.g., renal failure or major surgery). Imeglimin, a recently approved drug, is the first in a new class (novel mode of action) of T2D medicines. Although not a biguanide, Imeglimin shares a chemical moiety with Metformin and also modulates mitochondrial complex I activity, a potential mechanism for Metformin-mediated lactate accumulation. We interrogated the potential for Imeglimin to induce lacticacidosis in relevant animal models and further assessed differences in key mechanisms known for Metformin's effects. In a dog model of major surgery, Metformin or Imeglimin (30-1000 mg/kg) was acutely administered, only Metformin-induced lactate accumulation and pH decrease leading to lactic acidosis with fatality at the highest dose. Rats with gentamycin-induced renal insufficiency received Metformin or Imeglimin (50-100 mg/kg/h), only Metformin increased lactatemia and H+ concentrations with mortality at higher doses. Plasma levels of Metformin and Imeglimin were similar in both models. Mice were chronically treated with Metformin or Imeglimin 200 mg/kg bid. Only Metformin produced hyperlactatemia after acute intraperitoneal glucose loading. Ex vivo measurements revealed higher mitochondrial complex I inhibition with Metformin versus slight effects with Imeglimin. Another mechanism implicated in Metformin's effects on lactate production was assessed: in isolated rat, liver mitochondria exposed to Imeglimin or Metformin, only Metformin (50-250 µM) inhibited the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH). In liver samples from chronically treated mice, measured mGPDH activity was lower with Metformin versus Imeglimin. These data indicate that the risk of lactic acidosis with Imeglimin treatment may be lower than with Metformin and confirm that the underlying mechanisms of action are distinct, supporting its potential utility for patients with predisposing conditions.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Metformina , Insuficiência Renal , Acidose Láctica/induzido quimicamente , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Ácido Láctico , Metformina/efeitos adversos , Metformina/uso terapêutico , Camundongos , Ratos , Triazinas
7.
Hepatol Commun ; 6(1): 101-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494384

RESUMO

No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat diet-fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Fibrose/fisiopatologia , Hepatócitos/metabolismo , Humanos , Inflamação/fisiopatologia , Insulina/sangue , Lipogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia
8.
Diabetes Metab Res Rev ; 27(3): 286-97, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21309058

RESUMO

BACKGROUND: Fibroblast growth factor (FGF) 21, a novel member of the FGF family, plays a role in a variety of endocrine functions, including regulation of glucose and lipid metabolism. The role of FGF21 in skeletal muscle is currently not known. METHODS: Serum levels and skeletal muscle mRNA of FGF21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus normal glucose tolerant subjects (p < 0.05), whereas skeletal muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p < 0.01), but not in normal glucose tolerant subjects. Serum FGF21 concentrations were greater in T2D patients in the highest tertile of fasting insulin (p < 0.05) and BMI (p < 0.05). Stepwise regression analysis identified BMI as the strongest independent variable correlating with FGF21. FGF21 exposure increased basal and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering phosphorylation of Akt or AMP-activated protein kinase. CONCLUSIONS: Plasma FGF21 is increased in T2D patients, and positively correlated with fasting insulin and BMI. However, FGF21 has direct effects in enhancing skeletal muscle glucose uptake, providing additional points of regulation that may contribute to the beneficial effects of FGF21 on glucose homeostasis. Whether increased plasma FGF21 in T2D is a compensatory mechanism to increase glucose metabolism remains to be determined.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Músculo Esquelético/metabolismo , Animais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/sangue , Feminino , Fatores de Crescimento de Fibroblastos/biossíntese , Glucose/metabolismo , Transportador de Glucose Tipo 1/biossíntese , Humanos , Insulina/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Obesidade/sangue , RNA Mensageiro/metabolismo , Transdução de Sinais
9.
Endocrinol Diabetes Metab ; 4(2): e00193, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33855202

RESUMO

Objectives: Type 2 diabetes (T2D) is driven by progressive dysfunction and loss of pancreatic ß-cell mass. Imeglimin is a first-in-class novel drug candidate that improves glycaemia and glucose-stimulated insulin secretion in preclinical models and patients. Given evidence that imeglimin can attenuate ß-cell dysfunction and protect ß cells in vitro, we postulated that imeglimin could also exert longer term effects to prevent pancreatic ß-cell death and preserve functional ß-cell mass in vivo. Methods: Zucker diabetic fatty (ZDF) male rats were treated by oral gavage with imeglimin at a standard dose of 150 mg/kg or vehicle, twice daily for five weeks. At treatment completion, oral glucose tolerance tests were performed in fasted animals before a thorough histomorphometry and immunohistochemical analysis was conducted on pancreas tissue slices to assess cellular composition and disease status. Results: Imeglimin treatment significantly improved glucose-stimulated insulin secretion (augmentation of the insulinogenic index) and improved glycaemia. Both basal insulinaemia and pancreatic insulin content were also increased by imeglimin. In ZDF control rats, islet structure was disordered with few ß-cells; after imeglimin treatment, islets appeared healthier with more normal morphology in association with a significant increase in insulin-positive ß-cells. The increase in ß-cell mass was associated with a greater degree of ß-cell proliferation in the presence of reduced apoptosis. Unexpectedly, a decrease in as a α-cell mass was also documented due to an apparent antiproliferative effect of imeglimin on this cell type. Conclusion: In male ZDF rats, chronic imeglimin treatment corrects a paramount component of type 2 diabetes progression: progressive loss of functional ß-cell mass. In addition, imeglimin may also moderate a-cell turnover to further ameliorate hyperglycaemia. Cumulatively, these cellular effects suggest that imeglimin may provide for disease modifying effects to preserve functional ß-cell mass.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Triazinas/farmacologia , Triazinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Intolerância à Glucose/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratos Zucker
10.
PLoS One ; 16(2): e0241651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606677

RESUMO

Pancreatic islet ß-cell dysfunction is characterized by defective glucose-stimulated insulin secretion (GSIS) and is a predominant component of the pathophysiology of diabetes. Imeglimin, a novel first-in-class small molecule tetrahydrotriazine drug candidate, improves glycemia and GSIS in preclinical models and clinical trials in patients with Type 2 diabetes; however, the mechanism by which it restores ß-cell function is unknown. Here, we show that imeglimin acutely and directly amplifies GSIS in islets isolated from rodents with Type 2 diabetes via a mode of action that is distinct from other known therapeutic approaches. The underlying mechanism involves increases in the cellular nicotinamide adenine dinucleotide (NAD+) pool-potentially via the salvage pathway and induction of nicotinamide phosphoribosyltransferase (NAMPT) along with augmentation of glucose-induced ATP levels. Further, additional results suggest that NAD+ conversion to a second messenger, cyclic ADP ribose (cADPR), via ADP ribosyl cyclase/cADPR hydrolase (CD38) is required for imeglimin's effects in islets, thus representing a potential link between increased NAD+ and enhanced glucose-induced Ca2+ mobilization which-in turn-is known to drive insulin granule exocytosis. Collectively, these findings implicate a novel mode of action for imeglimin that explains its ability to effectively restore-ß-cell function and provides for a new approach to treat patients suffering from Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Triazinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Citocinas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Masculino , Modelos Biológicos , NAD/metabolismo , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase/metabolismo , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Compostos de Sulfonilureia/farmacologia
11.
Lancet Gastroenterol Hepatol ; 6(11): 889-902, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560015

RESUMO

BACKGROUND: AMP kinase (AMPK) is an energy sensor implicated in regulation of lipid metabolism, inflammation, and insulin sensitivity. We aimed to assess efficacy and safety of PXL770, a novel direct AMPK activator, in patients with non-alcoholic fatty liver disease (NAFLD). METHODS: STAMP-NAFLD, a randomised, double-blind, placebo-controlled phase 2a study, was done across 15 US clinical sites. Patients aged 18-75 years with liver fat content of at least 10% at baseline when assessed by MRI-proton density fat fraction (MRI-PDFF) were eligible. Patients were randomly assigned (1:1:1:1), via an interactive web response system, to receive oral PXL770 250 mg once daily, 250 mg twice daily, or 500 mg once daily, or matched placebo. Patients were stratified according to type 2 diabetes status and study site. The primary endpoint was relative change in liver fat content from baseline compared with placebo at week 12, assessed by MRI-PDFF. The primary endpoint was analysed in an ANCOVA model with treatment and stratification criteria as factors and baseline liver fat content as a covariate in the modified intention-to-treat population, defined as all as-randomised patients who received at least one dose of study treatment. Safety was analysed in the safety population, defined as all as-treated patients receiving at least one dose of the study treatment. The trial has been completed and the final results are reported. The trial is registered with ClinicalTrials.gov, NCT03763877. FINDINGS: Between March 29, 2019, and March 13, 2020, 387 patients were screened, of whom 120 were included in the modified intention-to-treat and safety analyses (30 in the 250 mg once daily group, 30 in the 250 mg twice daily group, 29 in the 500 mg once daily group, and 31 in the placebo group). The mean relative change from baseline in liver fat content at week 12 was -1·1% in the placebo group, -1·0% in the 250 mg once daily group (mean difference versus placebo 0·1% [95% CI -15·4 to 15·7], p=0·99), -14·3% in the 250 mg twice daily group (-13·1% [-28·1 to 1·8], p=0·084), and -14·7% in the 500 mg once daily group (-13·5% [-28·5 to 1·4], p=0·076). At least one treatment-emergent adverse event occurred in 23 (77%) of 30 patients in the 250 mg once daily group, 20 (67%) of 30 patients in the 250 mg twice daily group, 21 (72%) of 29 patients in the 500 mg once daily group, and 21 (68%) of 31 patients in the placebo group. The most common treatment-emergent adverse event was diarrhoea (five [17%] of patients in the 250 mg once daily group, seven [23%] in the 250 mg twice daily group, six [21%] in the 500 mg once daily group, and none in the placebo group). No life-threatening events or treatment-related deaths occurred. INTERPRETATION: PXL770 treatment did not meet the primary outcome of liver fat improvement compared with placebo. Treatment was well tolerated. Given indications that metabolic features improved with PXL770 treatment, AMPK activation might be a promising pharmacological target for patients with type 2 diabetes and NAFLD, and could also be considered for further assessment in patients with non-alcoholic steatohepatitis. FUNDING: Poxel.


Assuntos
Adenilato Quinase/metabolismo , Reguladores do Metabolismo de Lipídeos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Piridonas/uso terapêutico , Tetra-Hidronaftalenos/uso terapêutico , Administração Oral , Adolescente , Adulto , Idoso , Método Duplo-Cego , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piridonas/efeitos adversos , Tetra-Hidronaftalenos/efeitos adversos , Resultado do Tratamento , Adulto Jovem
12.
Cell Rep Med ; 2(12): 100474, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028615

RESUMO

AMPK is an energy sensor modulating metabolism, inflammation, and a target for metabolic disorders. Metabolic dysfunction results in lower AMPK activity. PXL770 is a direct AMPK activator, inhibiting de novo lipogenesis (DNL) and producing efficacy in preclinical models. We aimed to assess pharmacokinetics, safety, and pharmacodynamics of PXL770 in humans with metabolic syndrome-associated fatty liver disease. In a randomized, double-blind four-week trial, 12 overweight/obese patients with non-alcoholic fatty liver disease (NAFLD) and insulin resistance received PXL770 500 mg QD; 4 subjects received matching placebo. Endpoints included pharmacokinetics, hepatic fractional DNL, oral glucose tolerance testing, additional pharmacodynamic parameters, and safety. PK parameters show adequate plasma exposure in NAFLD patients for daily oral dosing. PXL770 decreases DNL-both peak and AUC are reduced versus baseline-and improves glycemic parameters and indices of insulin sensitivity versus baseline. Assessment of specific lipids reveals decrease in diacyglycerols/triacylglycerols. Safety/tolerability are similar to placebo. These results unveil initial human translation of AMPK activation and support this therapeutic strategy for metabolic disorders.


Assuntos
Adenilato Quinase/metabolismo , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas , Feminino , Glucose/metabolismo , Humanos , Lipídeos/sangue , Lipogênese/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Piridonas/efeitos adversos , Piridonas/sangue , Piridonas/farmacocinética , Tetra-Hidronaftalenos/efeitos adversos , Tetra-Hidronaftalenos/sangue , Tetra-Hidronaftalenos/farmacocinética
13.
Mol Pharmacol ; 73(1): 62-74, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17940191

RESUMO

Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR)gamma agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPARgammaMs interact with PPARgamma differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPARgamma ligand, SPPARgammaM2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPARgammaM2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPARgammaM2 was found to bind to and activate human PPARgamma in which the Tyr473 residue had been mutated to alanine (hPPARgammaY473A), with potencies similar to those observed with the wild-type receptor (hPPARgammaWT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPARgammaMs were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPARgamma full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPARgammaMs with the PPARgamma LBD, thereby providing a precise molecular determinant for their differing pharmacologies.


Assuntos
PPAR gama/metabolismo , Tirosina/metabolismo , Humanos , Ligantes
14.
Endocrinology ; 149(12): 6018-27, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18687777

RESUMO

Fibroblast growth factor 21 (FGF21) is a metabolic regulator that provides efficient and durable glycemic and lipid control in various animal models. However, its potential to treat obesity, a major health concern affecting over 30% of the population, has not been fully explored. Here we report that systemic administration of FGF21 for 2 wk in diet-induced obese and ob/ob mice lowered their mean body weight by 20% predominantly via a reduction in adiposity. Although no decrease in total caloric intake or effect on physical activity was observed, FGF21-treated animals exhibited increased energy expenditure, fat utilization, and lipid excretion, reduced hepatosteatosis, and ameliorated glycemia. Transcriptional and blood cytokine profiling studies revealed effects consistent with the ability of FGF21 to ameliorate insulin and leptin resistance, enhance fat oxidation and suppress de novo lipogenesis in liver as well as to activate futile cycling in adipose. Overall, these data suggest that FGF21 exhibits the therapeutic characteristics necessary for an effective treatment of obesity and fatty liver disease and provides novel insights into the metabolic determinants of these activities.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Obesidade/tratamento farmacológico , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Obesidade/sangue , Obesidade/etiologia
15.
Diabetes ; 55(6): 1695-704, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731832

RESUMO

Inhibitors of dipeptidyl peptidase-4 (DPP-4), a key regulator of the actions of incretin hormones, exert antihyperglycemic effects in type 2 diabetic patients. A major unanswered question concerns the potential ability of DPP-4 inhibition to have beneficial disease-modifying effects, specifically to attenuate loss of pancreatic beta-cell mass and function. Here, we investigated the effects of a potent and selective DPP-4 inhibitor, an analog of sitagliptin (des-fluoro-sitagliptin), on glycemic control and pancreatic beta-cell mass and function in a mouse model with defects in insulin sensitivity and secretion, namely high-fat diet (HFD) streptozotocin (STZ)-induced diabetic mice. Significant and dose-dependent correction of postprandial and fasting hyperglycemia, HbA(1c), and plasma triglyceride and free fatty acid levels were observed in HFD/STZ mice following 2-3 months of chronic therapy. Treatment with des-fluoro-sitagliptin dose dependently increased the number of insulin-positive beta-cells in islets, leading to the normalization of beta-cell mass and beta-cell-to-alpha-cell ratio. In addition, treatment of mice with des-fluoro-sitagliptin, but not glipizide, significantly increased islet insulin content and improved glucose-stimulated insulin secretion in isolated islets. These findings suggest that DPP-4 inhibitors may offer long-lasting efficacy in the treatment of type 2 diabetes by modifying the courses of the disease.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Pirazinas/farmacologia , Triazóis/farmacologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Glipizida/farmacologia , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pirazinas/química , Fosfato de Sitagliptina , Compostos de Sulfonilureia/farmacologia , Triazóis/química
16.
Endocrinology ; 147(9): 4252-62, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16728496

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-gamma agonists are insulin sensitizers, whereas PPAR alpha agonists are lipid-lowering agents in humans. Chronic treatment with PPAR gamma agonists has been shown to prevent the onset of diabetes in young Zucker diabetic fatty (ZDF) rats; however, the effects of PPAR alpha agonists have not been well characterized in this model. Here we investigated chronic efficacy of PPAR alpha and nonthiazolidinedione (nTZD) PPAR gamma agonists on the onset of diabetes in 6-wk-old male ZDF rats. Whereas treatment with the nTZD PPAR gamma agonist completely prevented development of hyperglycemia, PPAR alpha activation was associated with lowering of food intake and body weight and reductions in fed and fasting hyperglycemia, with prevention of the hyperinsulinemic peak preceding the development of hyperglycemia in ZDF rats. Both compounds improved glucose tolerance during an oral glucose tolerance test with concomitant increases in insulin response. Such improvements of insulin secretion were associated with increased islet to total pancreatic area ratio and pancreatic insulin contents. Hyperinsulinemic-euglycemic clamp studies demonstrated that nTZD PPAR gamma reduced basal endogenous glucose production and increased insulin-stimulated glucose disposal, consistent with an improved insulin action as a cause of the improved glucose homeostasis. In contrast, activation of PPAR alpha did not significantly improve glucose metabolism during the hyperinsulinemic-euglycemic clamp. In conclusion, chronic treatment of ZDF rats with a PPAR gamma agonist completely prevented the onset of diabetes by improving both insulin action and secretion, whereas PPAR alpha agonism was partially effective, primarily by improving the pancreatic islet insulin response. Unlike the PPAR gamma agonist, the PPAR alpha agonist demonstrated efficacy without inducing body weight gain and cardiomegaly. This study suggests a possible role for PPAR alpha agonists in the prevention of type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , PPAR alfa/agonistas , PPAR gama/agonistas , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Jejum , Alimentos , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Homeostase , Hiperglicemia/prevenção & controle , Insulina/sangue , Insulina/farmacologia , Ilhotas Pancreáticas/patologia , Masculino , Músculo Esquelético/química , PPAR alfa/farmacologia , Ratos , Ratos Zucker , Triglicerídeos/análise
17.
Diabetes Care ; 39(7): 1241-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26681715

RESUMO

OBJECTIVE: Type 2 diabetes pathophysiology is characterized by dysregulated glucagon secretion. LY2409021, a potent, selective small-molecule glucagon receptor antagonist that lowers glucose was evaluated for efficacy and safety in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: The efficacy (HbA1c and glucose) and safety (serum aminotransferase) of once-daily oral administration of LY2409021 was assessed in two double-blind studies. Phase 2a study patients were randomized to 10, 30, or 60 mg of LY2409021 or placebo for 12 weeks. Phase 2b study patients were randomized to 2.5, 10, or 20 mg LY2409021 or placebo for 24 weeks. RESULTS: LY2409021 produced reductions in HbA1c that were significantly different from placebo over both 12 and 24 weeks. After 12 weeks, least squares (LS) mean change from baseline in HbA1c was -0.83% (10 mg), -0.65% (30 mg), and -0.66% (60 mg) (all P < 0.05) vs. placebo, 0.11%. After 24 weeks, LS mean change from baseline in HbA1c was -0.45% (2.5 mg), -0.78% (10 mg, P < 0.05), -0.92% (20 mg, P < 0.05), and -0.15% with placebo. Increases in serum aminotransferase, fasting glucagon, and total fasting glucagon-like peptide-1 (GLP-1) were observed; levels returned to baseline after drug washout. Fasting glucose was also lowered with LY2409021 at doses associated with only modest increases in aminotransferases (mean increase in alanine aminotransferase [ALT] ≤10 units/L). The incidence of hypoglycemia in the LY2409021 groups was not statistically different from placebo. CONCLUSIONS: In patients with type 2 diabetes, glucagon receptor antagonist treatment significantly lowered HbA1c and glucose levels with good overall tolerability and a low risk for hypoglycemia. Modest, reversible increases in serum aminotransferases were observed.


Assuntos
Compostos de Bifenilo/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Receptores de Glucagon/antagonistas & inibidores , Adulto , Idoso , Compostos de Bifenilo/efeitos adversos , Glicemia/metabolismo , Método Duplo-Cego , Feminino , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Masculino , Pessoa de Meia-Idade , Transaminases/sangue , Adulto Jovem
18.
Diabetes ; 51(8): 2412-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12145152

RESUMO

Thiazolidinediones (TZDs), agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), improve insulin sensitivity in vivo, and the mechanism remains largely unknown. In this study, we showed that, in Zucker obese (fa/fa) rats, acute (1-day) treatment with both rosiglitazone (a TZD) and a non-TZD PPARgamma agonist (nTZD) reduced plasma free fatty acid and insulin levels and, concomitantly, potentiated insulin-stimulated Akt phosphorylation at threonine 308 (Akt-pT308) in adipose and muscle tissues. A similar effect on Akt was observed in liver after a 7-day treatment. The increase in Akt-pT308 was correlated with an increase in Akt phosphorylation at serine 473 (Akt-pS473), tyrosine phosphorylation of insulin receptor beta subunit and insulin receptor substrate-1, and serine phosphorylation of glycogen synthase kinase-3alpha/beta. The agonists appeared to potentiate Akt1 phosphorylation in muscle and liver and both Akt1 and Akt2 in adipose. Finally, potentiation of insulin signaling was also observed in isolated adipose tissue ex vivo and differentiated 3T3 L1 adipocytes in vitro, but not in rat primary hepatocytes in vitro. These results suggest that 1) PPARgamma agonists acutely potentiate insulin signaling in adipose and muscle tissues and such regulation may be physiologically relevant to insulin sensitization in vivo; 2) the agonists directly target adipose tissues; and 3) the metabolic and signaling effects of the agonists are mediated by structurally distinct PPARgamma agonists.


Assuntos
Insulina/fisiologia , Obesidade/fisiopatologia , Receptores Citoplasmáticos e Nucleares/agonistas , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Tiazolidinedionas , Fatores de Transcrição/agonistas , Tecido Adiposo/metabolismo , Animais , Ácidos Graxos não Esterificados/sangue , Feminino , Insulina/sangue , Proteínas Substratos do Receptor de Insulina , Cinética , Fígado/enzimologia , Músculo Esquelético/enzimologia , Obesidade/genética , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Fosfotirosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Zucker , Receptor de Insulina/metabolismo , Rosiglitazona
19.
Diabetes ; 51(7): 2074-81, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12086935

RESUMO

Metformin is an effective hypoglycemic drug that lowers blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in skeletal muscle; however, the molecular site of metformin action is not well understood. AMP-activated protein kinase (AMPK) activity increases in response to depletion of cellular energy stores, and this enzyme has been implicated in the stimulation of glucose uptake into skeletal muscle and the inhibition of liver gluconeogenesis. We recently reported that AMPK is activated by metformin in cultured rat hepatocytes, mediating the inhibitory effects of the drug on hepatic glucose production. In the present study, we evaluated whether therapeutic doses of metformin increase AMPK activity in vivo in subjects with type 2 diabetes. Metformin treatment for 10 weeks significantly increased AMPK alpha2 activity in the skeletal muscle, and this was associated with increased phosphorylation of AMPK on Thr172 and decreased acetyl-CoA carboxylase-2 activity. The increase in AMPK alpha2 activity was likely due to a change in muscle energy status because ATP and phosphocreatine concentrations were lower after metformin treatment. Metformin-induced increases in AMPK activity were associated with higher rates of glucose disposal and muscle glycogen concentrations. These findings suggest that the metabolic effects of metformin in subjects with type 2 diabetes may be mediated by the activation of AMPK alpha2.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos não Esterificados/sangue , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Cinética , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
20.
Diabetes ; 53(12): 3267-73, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561959

RESUMO

Glucagon maintains glucose homeostasis during the fasting state by promoting hepatic gluconeogenesis and glycogenolysis. Hyperglucagonemia and/or an elevated glucagon-to-insulin ratio have been reported in diabetic patients and animals. Antagonizing the glucagon receptor is expected to result in reduced hepatic glucose overproduction, leading to overall glycemic control. Here we report the discovery and characterization of compound 1 (Cpd 1), a compound that inhibits binding of 125I-labeled glucagon to the human glucagon receptor with a half-maximal inhibitory concentration value of 181 +/- 10 nmol/l. In CHO cells overexpressing the human glucagon receptor, Cpd 1 increased the half-maximal effect for glucagon stimulation of adenylyl cyclase with a KDB of 81 +/- 11 nmol/l. In addition, Cpd 1 blocked glucagon-mediated glycogenolysis in primary human hepatocytes. In contrast, a structurally related analog (Cpd 2) was not effective in blocking glucagon-mediated biological effects. Real-time measurement of glycogen synthesis and breakdown in perfused mouse liver showed that Cpd 1 is capable of blocking glucagon-induced glycogenolysis in a dosage-dependent manner. Finally, when dosed in humanized mice, Cpd 1 blocked the rise of glucose levels observed after intraperitoneal administration of exogenous glucagon. Taken together, these data suggest that Cpd 1 is a potent glucagon receptor antagonist that has the capability to block the effects of glucagon in vivo.


Assuntos
Glucagon/antagonistas & inibidores , Receptores de Glucagon/antagonistas & inibidores , Adenilil Ciclases/metabolismo , Animais , Células CHO , Cricetinae , Glucagon/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Cinética , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA