Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 490: 37-49, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820658

RESUMO

The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.


Assuntos
Nervos Periféricos , Peixe-Zebra , Animais , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Músculos , Sistema Nervoso Periférico , Peixe-Zebra/genética
2.
Dev Biol ; 471: 18-33, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290818

RESUMO

The spine gives structural support for the adult body, protects the spinal cord, and provides muscle attachment for moving through the environment. The development and maturation of the spine and its physiology involve the integration of multiple musculoskeletal tissues including bone, cartilage, and fibrocartilaginous joints, as well as innervation and control by the nervous system. One of the most common disorders of the spine in human is adolescent idiopathic scoliosis (AIS), which is characterized by the onset of an abnormal lateral curvature of the spine of <10° around adolescence, in otherwise healthy children. The genetic basis of AIS is largely unknown. Systematic genome-wide mutagenesis screens for embryonic phenotypes in zebrafish have been instrumental in the understanding of early patterning of embryonic tissues necessary to build and pattern the embryonic spine. However, the mechanisms required for postembryonic maturation and homeostasis of the spine remain poorly understood. Here we report the results from a small-scale forward genetic screen for adult-viable recessive and dominant zebrafish mutations, leading to overt morphological abnormalities of the adult spine. Germline mutations induced with N-ethyl N-nitrosourea (ENU) were transmitted and screened for dominant phenotypes in 1229 F1 animals, and subsequently bred to homozygosity in F3 families; from these, 314 haploid genomes were screened for adult-viable recessive phenotypes affecting general body shape. We cumulatively found 40 adult-viable (3 dominant and 37 recessive) mutations each leading to a defect in the morphogenesis of the spine. The largest phenotypic group displayed larval onset axial curvatures, leading to whole-body scoliosis without vertebral dysplasia in adult fish. Pairwise complementation testing of 16 mutant lines within this phenotypic group revealed at least 9 independent mutant loci. Using massively-parallel whole genome or whole exome sequencing and meiotic mapping we defined the molecular identity of several loci for larval onset whole-body scoliosis in zebrafish. We identified a new mutation in the skolios/kinesin family member 6 (kif6) gene, causing neurodevelopmental and ependymal cilia defects in mouse and zebrafish. We also report multiple recessive alleles of the scospondin and a disintegrin and metalloproteinase with thrombospondin motifs 9 (adamts9) genes, which all display defects in spine morphogenesis. Our results provide evidence of monogenic traits that are essential for normal spine development in zebrafish, that may help to establish new candidate risk loci for spine disorders in humans.


Assuntos
Mutação em Linhagem Germinativa , Coluna Vertebral/crescimento & desenvolvimento , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Embrião não Mamífero/embriologia , Genoma , Humanos , Neurogênese/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Mult Scler ; 28(3): 331-345, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35236198

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is a growing global health challenge affecting nearly 3 million people. Progress has been made in the understanding and treatment of MS over the last several decades, but cures remain elusive. The National MS Society is focused on achieving cures for MS. OBJECTIVES: Cures for MS will be hastened by having a roadmap that describes knowledge gaps, milestones, and research priorities. In this report, we share the Pathways to Cures Research Roadmap and recommendations for strategies to accelerate the development of MS cures. METHODS: The Roadmap was developed through engagement of scientific thought leaders and people affected by MS from North America and the United Kingdom. It also included the perspectives of over 300 people living with MS and was endorsed by many leading MS organizations. RESULTS: The Roadmap consist of three distinct but overlapping cure pathways: (1) stopping the MS disease process, (2) restoring lost function by reversing damage and symptoms, and (3) ending MS through prevention. Better alignment and focus of global resources on high priority research questions are also recommended. CONCLUSIONS: We hope the Roadmap will inspire greater collaboration and alignment of global resources that accelerate scientific breakthroughs leading to cures for MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/terapia , América do Norte , Reino Unido
4.
Nature ; 536(7617): 464-8, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27501152

RESUMO

Ablation of the cellular prion protein PrP(C) leads to a chronic demyelinating polyneuropathy affecting Schwann cells. Neuron-restricted expression of PrP(C) prevents the disease, suggesting that PrP(C) acts in trans through an unidentified Schwann cell receptor. Here we show that the cAMP concentration in sciatic nerves from PrP(C)-deficient mice is reduced, suggesting that PrP(C) acts via a G protein-coupled receptor (GPCR). The amino-terminal flexible tail (residues 23-120) of PrP(C) triggered a concentration-dependent increase in cAMP in primary Schwann cells, in the Schwann cell line SW10, and in HEK293T cells overexpressing the GPCR Adgrg6 (also known as Gpr126). By contrast, naive HEK293T cells and HEK293T cells expressing several other GPCRs did not react to the flexible tail, and ablation of Gpr126 from SW10 cells abolished the flexible tail-induced cAMP response. The flexible tail contains a polycationic cluster (KKRPKPG) similar to the GPRGKPG motif of the Gpr126 agonist type-IV collagen. A KKRPKPG-containing PrPC-derived peptide (FT(23-50)) sufficed to induce a Gpr126-dependent cAMP response in cells and mice, and improved myelination in hypomorphic gpr126 mutant zebrafish (Danio rerio). Substitution of the cationic residues with alanines abolished the biological activity of both FT(23-50) and the equivalent type-IV collagen peptide. We conclude that PrP(C) promotes myelin homeostasis through flexible tail-mediated Gpr126 agonism. As well as clarifying the physiological role of PrP(C), these observations are relevant to the pathogenesis of demyelinating polyneuropathies--common debilitating diseases for which there are limited therapeutic options.


Assuntos
Príons/metabolismo , Príons/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Colágeno Tipo IV/química , Colágeno Tipo IV/farmacologia , AMP Cíclico/metabolismo , Doenças Desmielinizantes/metabolismo , Feminino , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Bainha de Mielina/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Maleabilidade , Proteínas Priônicas , Príons/química , Príons/genética , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
5.
Nat Rev Neurosci ; 17(9): 550-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466150

RESUMO

Members of the adhesion G protein-coupled receptor (aGPCR) class have emerged as crucial regulators of nervous system development, with important implications for human health and disease. In this Review, we discuss the current understanding of aGPCR functions during key steps in neural development, including cortical patterning, dendrite and synapse formation, and myelination. We focus on aGPCR modulation of cell-cell and cell-matrix interactions and signalling to control these varied aspects of neural development, and we discuss how impaired aGPCR function leads to neurological disease. We further highlight the emerging hypothesis that aGPCRs can be mechanically activated and the implications of this property in the nervous system.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Humanos , Neurônios/ultraestrutura
6.
J Biol Chem ; 294(50): 19246-19254, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31628191

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) represent a distinct family of GPCRs that regulate several developmental and physiological processes. Most aGPCRs undergo GPCR autoproteolysis-inducing domain-mediated protein cleavage, which produces a cryptic tethered agonist (termed Stachel (stinger)), and cleavage-dependent and -independent aGPCR signaling mechanisms have been described. aGPCR G1 (ADGRG1 or G protein-coupled receptor 56 (GPR56)) has pleiotropic functions in the development of multiple organ systems, which has broad implications for human diseases. To date, two natural GPR56 ligands, collagen III and tissue transglutaminase (TG2), and one small-molecule agonist, 3-α-acetoxydihydrodeoxygedunin (3-α-DOG), have been identified, in addition to a synthetic peptide, P19, that contains seven amino acids of the native Stachel sequence. However, the mechanisms by which these natural and small-molecule agonists signal through GPR56 remain unknown. Here we engineered a noncleavable receptor variant that retains signaling competence via the P19 peptide. We demonstrate that both natural and small-molecule agonists can activate only cleaved GPR56. Interestingly, TG2 required both receptor cleavage and the presence of a matrix protein, laminin, to activate GPR56, whereas collagen III and 3-α-DOG signaled without any cofactors. On the other hand, both TG2/laminin and collagen III activate the receptor by dissociating the N-terminal fragment from its C-terminal fragment, enabling activation by the Stachel sequence, whereas P19 and 3-α-DOG initiate downstream signaling without disengaging the N-terminal fragment from its C-terminal fragment. These findings deepen our understanding of how GPR56 signals via natural ligands, and a small-molecule agonist may be broadly applicable to other aGPCR family members.


Assuntos
Limoninas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Ligantes , Limoninas/química , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
Glia ; 68(6): 1182-1200, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31873966

RESUMO

Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100ß expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.


Assuntos
Junção Neuromuscular/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann/metabolismo , Animais , Camundongos , Músculo Esquelético/fisiopatologia , Regeneração Nervosa/fisiologia , Junção Neuromuscular/fisiopatologia , Receptores Colinérgicos/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(43): E9153-E9162, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073112

RESUMO

Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.


Assuntos
Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , RNA Mensageiro/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/patologia , Transporte Biológico , Proliferação de Células/genética , Células Cultivadas , Complexo Dinactina/genética , Dineínas/genética , Larva , Proteínas dos Microfilamentos/genética , Oligodendroglia/patologia , Ratos Sprague-Dawley , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Pharmacol Rev ; 67(2): 338-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713288

RESUMO

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Assuntos
Moléculas de Adesão Celular/metabolismo , AMP Cíclico/fisiologia , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sistemas do Segundo Mensageiro , Animais , Adesão Celular , Moléculas de Adesão Celular/química , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Movimento Celular , Humanos , Agências Internacionais , Ligantes , Farmacologia/tendências , Farmacologia Clínica/tendências , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Transdução de Sinais , Sociedades Científicas , Terminologia como Assunto
10.
J Neurosci ; 36(49): 12351-12367, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927955

RESUMO

Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT: Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Receptores Acoplados a Proteínas G/genética , Células de Schwann/patologia , Animais , Axônios , Camundongos , Camundongos Knockout , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Bainha de Mielina , Compressão Nervosa , Regeneração Nervosa , Infiltração de Neutrófilos , Nervo Isquiático/lesões
11.
Hum Mol Genet ; 24(15): 4365-73, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25954032

RESUMO

Adolescent idiopathic scoliosis (AIS) and pectus excavatum (PE) are common pediatric musculoskeletal disorders. Little is known about the tissue of origin for either condition, or about their genetic bases. Common variants near GPR126/ADGRG6 (encoding the adhesion G protein-coupled receptor 126/adhesion G protein-coupled receptor G6, hereafter referred to as GPR126) were recently shown to be associated with AIS in humans. Here, we provide genetic evidence that loss of Gpr126 in osteochondroprogenitor cells alters cartilage biology and spinal column development. Microtomographic and x-ray studies revealed several hallmarks of AIS, including postnatal onset of scoliosis without malformations of vertebral units. The mutants also displayed a dorsal-ward deflection of the sternum akin to human PE. At the cellular level, these defects were accompanied by failure of midline fusion within the developing annulus fibrosis of the intervertebral discs and increased apoptosis of chondrocytes in the ribs and vertebrae. Molecularly, we found that loss of Gpr126 upregulated the expression of Gal3st4, a gene implicated in human PE, encoding Galactose-3-O-sulfotransferase 4. Together, these data uncover Gpr126 as a genetic cause for the pathogenesis of AIS and PE in a mouse model.


Assuntos
Tórax em Funil/genética , Receptores Acoplados a Proteínas G/genética , Escoliose/genética , Sulfotransferases/genética , Animais , Cartilagem , Condrócitos/patologia , Modelos Animais de Doenças , Tórax em Funil/patologia , Predisposição Genética para Doença , Humanos , Camundongos , Receptores Acoplados a Proteínas G/biossíntese , Escoliose/patologia , Esterno/patologia , Sulfotransferases/biossíntese
12.
Handb Exp Pharmacol ; 234: 221-247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832490

RESUMO

Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Mecanotransdução Celular , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Moléculas de Adesão Celular/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Estresse Mecânico , Relação Estrutura-Atividade
13.
Handb Exp Pharmacol ; 234: 275-298, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832492

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) are emerging as key regulators of nervous system development and health. aGPCRs can regulate many aspects of neural development, including cell signaling, cell-cell and cell-matrix interactions, and, potentially, mechanosensation. Here, we specifically focus on the roles of several aGPCRs in synapse biology, dendritogenesis, and myelinating glial cell development. The lessons learned from these examples may be extrapolated to other contexts in the nervous system and beyond.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Sinapses Elétricas/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Moléculas de Adesão Celular/metabolismo , Humanos , Ligantes , Modelos Moleculares , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 110(42): 16898-903, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082093

RESUMO

Despite their abundance and multiple functions in a variety of organ systems, the function and signaling mechanisms of adhesion G protein-coupled receptors (GPCRs) are poorly understood. Adhesion GPCRs possess large N termini containing various functional domains. In addition, many of them are autoproteolytically cleaved at their GPS sites into an N-terminal fragment (NTF) and C-terminal fragment. Here we demonstrate that Gpr126 is expressed in the endocardium during early mouse heart development. Gpr126 knockout in mice and knockdown in zebrafish caused hypotrabeculation and affected mitochondrial function. Ectopic expression of Gpr126-NTF that lacks the GPS motif (NTF(ΔGPS)) in zebrafish rescued the trabeculation but not the previously described myelination phenotype in the peripheral nervous system. These data support a model in which the NTF of Gpr126, in contrast to the C-terminal fragment, plays an important role in heart development. Collectively, our analysis provides a unique example of the versatile function and signaling properties of adhesion GPCRs in vertebrates.


Assuntos
Endocárdio/embriologia , Mitocôndrias Cardíacas/metabolismo , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Endocárdio/citologia , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Especificidade de Órgãos/fisiologia , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Mol Pharmacol ; 88(3): 617-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25956432

RESUMO

The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in humans. aGPCRs are characterized by their enormous size and complex modular structures. While the physiologic importance of many aGPCRs has been clearly demonstrated in recent years, the underlying molecular functions have only recently begun to be elucidated. In this minireview, we present an overview of our current knowledge on aGPCR activation and signal transduction with a focus on the latest findings regarding the interplay between ligand binding, mechanical force, and the tethered agonistic Stachel sequence, as well as implications on translational approaches that may derive from understanding aGPCR pharmacology.


Assuntos
Adesão Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Humanos , Ligação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/química , Transdução de Sinais
16.
Mol Pharmacol ; 88(3): 596-603, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25979002

RESUMO

The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Acoplados a Proteínas G/genética
17.
Glia ; 63(8): 1376-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921593

RESUMO

In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.


Assuntos
Células de Schwann/metabolismo , Animais , Humanos , Bainha de Mielina/metabolismo , Células-Tronco Neurais/metabolismo
18.
BMC Genomics ; 16: 62, 2015 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-25715737

RESUMO

BACKGROUND: Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species. RESULTS: Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3, and EMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII. Using quantitative real-time PCR, we have defined the expression profiles of 59 zebrafish aGPCRs at 12 developmental time points and 10 adult tissues representing every major organ system. Importantly, expression profiles of zebrafish aGPCRs in adult tissues are similar to those previously reported in mouse, rat, and human, underscoring the evolutionary conservation of this family, and therefore the utility of the zebrafish for studying aGPCR biology. CONCLUSIONS: Our results support the notion that zebrafish are a potentially useful model to study the biology of aGPCRs from a functional perspective. The zebrafish aGPCR repertoire, classification, and nomenclature, together with their expression profiles during development and in adult tissues, provides a crucial foundation for elucidating aGPCR functions and pursuing aGPCRs as therapeutic targets.


Assuntos
Moléculas de Adesão Celular/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Peixe-Zebra/crescimento & desenvolvimento
19.
J Recept Signal Transduct Res ; 35(3): 220-3, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26366621

RESUMO

The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/fisiologia , Animais , Moléculas de Adesão Celular/ultraestrutura , Simulação por Computador , Humanos , Proteínas de Membrana/ultraestrutura , Modelos Biológicos , Modelos Químicos , Receptores Acoplados a Proteínas G/ultraestrutura , Relação Estrutura-Atividade
20.
J Neurosci ; 33(46): 17976-85, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227709

RESUMO

The myelin sheath surrounding axons ensures that nerve impulses travel quickly and efficiently, allowing for the proper function of the vertebrate nervous system. We previously showed that the adhesion G-protein-coupled receptor (aGPCR) Gpr126 is essential for peripheral nervous system myelination, although the molecular mechanisms by which Gpr126 functions were incompletely understood. aGPCRs are a significantly understudied protein class, and it was unknown whether Gpr126 couples to G-proteins. Here, we analyze Dhh(Cre);Gpr126(fl/fl) conditional mutants, and show that Gpr126 functions in Schwann cells (SCs) for radial sorting of axons and myelination. Furthermore, we demonstrate that elevation of cAMP levels or protein kinase A activation suppresses myelin defects in Gpr126 mouse mutants and that cAMP levels are reduced in conditional Gpr126 mutant peripheral nerve. Finally, we show that GPR126 directly increases cAMP by coupling to heterotrimeric G-proteins. Together, these data support a model in which Gpr126 functions in SCs for proper development and myelination and provide evidence that these functions are mediated via G-protein-signaling pathways.


Assuntos
Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Células de Schwann/metabolismo , Animais , Células COS , Chlorocebus aethiops , Feminino , Proteínas de Ligação ao GTP/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/ultraestrutura , Células de Schwann/ultraestrutura , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA