RESUMO
In this paper, we report on the photon emission of Silicon Photomultipliers (SiPMs) from avalanche pulses generated in dark conditions, with the main objective of better understanding the associated systematics for next-generation, large area, SiPM-based physics experiments. A new apparatus for spectral and imaging analysis was developed at TRIUMF and used to measure the light emitted by the two SiPMs considered as photo-sensor candidates for the nEXO neutrinoless double-beta decay experiment: one Fondazione Bruno Kessler (FBK) VUV-HD Low Field (LF) Low After Pulse (Low AP) (VUV-HD3) SiPM and one Hamamatsu Photonics K.K. (HPK) VUV4 Multi-Pixel Photon Counter (MPPC). Spectral measurements of their light emissions were taken with varying over-voltage in the wavelength range of 450-1020 nm. For the FBK VUV-HD3, at an over-voltage of 12.1±1.0 V, we measured a secondary photon yield (number of photons (γ) emitted per charge carrier (e-)) of (4.04±0.02)×10-6γ/e-. The emission spectrum of the FBK VUV-HD3 contains an interference pattern consistent with thin-film interference. Additionally, emission microscopy images (EMMIs) of the FBK VUV-HD3 show a small number of highly localized regions with increased light intensity (hotspots) randomly distributed over the SiPM surface area. For the HPK VUV4 MPPC, at an over-voltage of 10.7±1.0 V, we measured a secondary photon yield of (8.71±0.04)×10-6γ/e-. In contrast to the FBK VUV-HD3, the emission spectra of the HPK VUV4 did not show an interference pattern-likely due to a thinner surface coating. The EMMIs of the HPK VUV4 also revealed a larger number of hotspots compared to the FBK VUV-HD3, especially in one of the corners of the device. The photon yield reported in this paper may be limited if compared with the one reported in previous studies due to the measurement wavelength range, which is only up to 1020 nm.
RESUMO
This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g., 210Pb, producing g-emissions with energies ranging from 10 keV to several 100 keV when they decay; this range is detectable in silicon sensors. In this paper we test a CMOS camera (OXFORD INSTRUMENTS Neo 5.5) for its general performance as a detector of X-rays and low energy g-rays and assess its sensitivity relative to the World Health Organization upper limit on lead in drinking water. Energies from 6 keV to 60 keV are examined. The CMOS camera has a linear energy response over this range and its energy resolution is for the most part slightly better than 2%. The Neo sCMOS is not sensitive to X-rays with energies below ~10 keV. The smallest detectable rate is 40 ± 3 mHz, corresponding to an incident activity on the chip of 7 ± 4 Bq. The estimation of the incident activity sensitivity from the detected activity relies on geometric acceptance and the measured efficiency vs. energy. We report the efficiency measurement, which is 0.08(2)% (0.0011(2)%) at 26.3 keV (59.5 keV). Taking calorimetric information into account we measure a minimal detectable rate of 4 ± 1 mHz (1.5 ± 0.1 mHz) for 26.3 keV (59.5 keV) g-rays, which corresponds to an incident activity of 1.0 ± 0.6 Bq (57 ± 33 Bq). Toy Monte Carlo and Geant4 simulations agree with these results. These results show this CMOS sensor is well-suited as a g- and X-ray detector with sensitivity at the few to 100 ppb level for 210Pb in a sample.
RESUMO
Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.