Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(14): 7687-702, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26763236

RESUMO

Leuconostoc citreumNRRL B-742 has been known for years to produce a highly α-(1→3)-branched dextran for which the synthesis had never been elucidated. In this work a gene coding for a putative α-transglucosylase of the GH70 family was identified in the reported genome of this bacteria and functionally characterized. From sucrose alone, the corresponding recombinant protein, named BRS-B, mainly catalyzed sucrose hydrolysis and leucrose synthesis. However, in the presence of sucrose and a dextran acceptor, the enzyme efficiently transferred the glucosyl residue from sucrose to linear α-(1→6) dextrans through the specific formation of α-(1→3) linkages. To date, BRS-B is the first reported α-(1→3) branching sucrase. Using a suitable sucrose/dextran ratio, a comb-like dextran with 50% of α-(1→3) branching was synthesized, suggesting that BRS-B is likely involved in the comb-like dextran produced byL. citreumNRRL B-742. In addition, data mining based on the search for specific sequence motifs allowed the identification of two genes putatively coding for branching sucrases in the genome ofLeuconostoc fallaxKCTC3537 andLactobacillus kunkeeiEFB6. Biochemical characterization of the corresponding recombinant enzymes confirmed their branching specificity, revealing that branching sucrases are not only found inL. citreumspecies. According to phylogenetic analyses, these enzymes are proposed to constitute a new subgroup of the GH70 family.


Assuntos
Proteínas de Bactérias , Leuconostoc/enzimologia , Sacarase , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sacarase/química , Sacarase/genética , Sacarase/metabolismo
2.
Mol Microbiol ; 102(4): 579-592, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27573446

RESUMO

In prominent gut Bacteroides strains, sophisticated strategies have been evolved to achieve the complete degradation of dietary polysaccharides such as xylan, which is one of the major components of the plant cell wall. Polysaccharide Utilization Loci (PULs) consist of gene clusters encoding different proteins with a vast arsenal of functions, including carbohydrate binding, transport and hydrolysis. Transport is often attributed to TonB-dependent transporters, although major facilitator superfamily (MFS) transporters have also been identified in some PULs. However, until now, few of these transporters have been biochemically characterized. Here, we targeted a PUL-like system from an uncultivated Bacteroides species that is highly prevalent in the human gut metagenome. It encodes three glycoside-hydrolases specific for xylo-oligosaccharides, a SusC/SusD tandem homolog and a MFS transporter. We combined PUL rational engineering, metabolic and transcriptional analysis in Escherichia coli to functionally characterize this genomic locus. We demonstrated that the SusC and the MFS transporters are specific for internalization of linear xylo-oligosaccharides of polymerization degree up to 3 and 4 respectively. These results were strengthened by the study of growth dynamics and transcriptional analyses in response to XOS induction of the PUL in the native strain, Bacteroides vulgatus.


Assuntos
Bacteroides/genética , Bacteroides/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Glicosídeo Hidrolases/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Simbiose , Xilosidases/metabolismo
3.
Biochem J ; 467(1): 17-35, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25793417

RESUMO

Carbohydrates are ubiquitous in Nature and play vital roles in many biological systems. Therefore the synthesis of carbohydrate-based compounds is of considerable interest for both research and commercial purposes. However, carbohydrates are challenging, due to the large number of sugar subunits and the multiple ways in which these can be linked together. Therefore, to tackle the challenge of glycosynthesis, chemists are increasingly turning their attention towards enzymes, which are exquisitely adapted to the intricacy of these biomolecules. In Nature, glycosidic linkages are mainly synthesized by Leloir glycosyltransferases, but can result from the action of non-Leloir transglycosylases or phosphorylases. Advantageously for chemists, non-Leloir transglycosylases are glycoside hydrolases, enzymes that are readily available and exhibit a wide range of substrate specificities. Nevertheless, non-Leloir transglycosylases are unusual glycoside hydrolases in as much that they efficiently catalyse the formation of glycosidic bonds, whereas most glycoside hydrolases favour the mechanistically related hydrolysis reaction. Unfortunately, because non-Leloir transglycosylases are almost indistinguishable from their hydrolytic counterparts, it is unclear how these enzymes overcome the ubiquity of water, thus avoiding the hydrolytic reaction. Without this knowledge, it is impossible to rationally design non-Leloir transglycosylases using the vast diversity of glycoside hydrolases as protein templates. In this critical review, a careful analysis of literature data describing non-Leloir transglycosylases and their relationship to glycoside hydrolase counterparts is used to clarify the state of the art knowledge and to establish a new rational basis for the engineering of glycoside hydrolases.


Assuntos
Metabolismo dos Carboidratos , Evolução Molecular , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Modelos Moleculares , Engenharia de Proteínas , Animais , Biocatálise , Domínio Catalítico , Glicoproteínas/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Humanos , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Conformação Proteica , Engenharia de Proteínas/tendências , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
4.
Biochim Biophys Acta ; 1840(1): 626-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140392

RESUMO

BACKGROUND: The development of enzyme-mediated glycosynthesis using glycoside hydrolases is still an inexact science, because the underlying molecular determinants of transglycosylation are not well understood. In the framework of this challenge, this study focused on the family GH51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus, with the aim to understand why the mutation of position 344 provokes a significant modification of the transglycosylation/hydrolysis partition. METHODS: Detailed kinetic analysis (kcat, KM, pKa determination and time-course NMR kinetics) and saturation transfer difference nuclear magnetic resonance spectroscopy was employed to determine the synthetic and hydrolytic ability modification induced by the redundant N344 mutation disclosed in libraries from directed evolution. RESULTS: The mutants N344P and N344Y displayed crippled hydrolytic abilities, and thus procured improved transglycosylation yields. This behavior was correlated with an increased pKa of the catalytic nucleophile (E298), the pKa of the acid/base catalyst remaining unaffected. Finally, mutations at position 344 provoked a pH-dependent product inhibition phenomenon, which is likely to be the result of a significant modification of the proton sharing network in the mutants. CONCLUSIONS AND GENERAL SIGNIFICANCE: Using a combination of biochemical and biophysical methods, we have studied TxAbf-N344 mutants, thus revealing some fundamental details concerning pH modulation. Although these results concern a GH51 α-l-arabinofuranosidase, it is likely that the general lessons that can be drawn from them will be applicable to other glycoside hydrolases. Moreover, the effects of mutations at position 344 on the transglycosylation/hydrolysis partition provide clues as to how TxAbf can be further engineered to obtain an efficient transfuranosidase.


Assuntos
Arabinose/metabolismo , Bacillaceae/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação/genética , Bacillaceae/genética , Bacillaceae/metabolismo , Catálise , Domínio Catalítico , Cromatografia em Camada Fina , Glicosídeo Hidrolases/química , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
5.
J Biol Chem ; 288(45): 32370-32383, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24043624

RESUMO

To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze ß-D-Manp-1,4-ß-D-GlcpNAc-1,4-D-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Intestinos/microbiologia , Manose/metabolismo , Fosforilases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Manose/química , Manose/genética , Metagenoma/fisiologia , Mutagênese Sítio-Dirigida , Fosforilases/química , Fosforilases/genética
6.
J Biol Chem ; 287(9): 6642-54, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22210773

RESUMO

Amylosucrases are sucrose-utilizing α-transglucosidases that naturally catalyze the synthesis of α-glucans, linked exclusively through α1,4-linkages. Side products and in particular sucrose isomers such as turanose and trehalulose are also produced by these enzymes. Here, we report the first structural and biophysical characterization of the most thermostable amylosucrase identified so far, the amylosucrase from Deinoccocus geothermalis (DgAS). The three-dimensional structure revealed a homodimeric quaternary organization, never reported before for other amylosucrases. A sequence signature of dimerization was identified from the analysis of the dimer interface and sequence alignments. By rigidifying the DgAS structure, the quaternary organization is likely to participate in the enhanced thermal stability of the protein. Amylosucrase specificity with respect to sucrose isomer formation (turanose or trehalulose) was also investigated. We report the first structures of the amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea in complex with turanose. In the amylosucrase from N. polysaccharea (NpAS), key residues were found to force the fructosyl moiety to bind in an open state with the O3' ideally positioned to explain the preferential formation of turanose by NpAS. Such residues are either not present or not similarly placed in DgAS. As a consequence, DgAS binds the furanoid tautomers of fructose through a weak network of interactions to enable turanose formation. Such topology at subsite +1 is likely favoring other possible fructose binding modes in agreement with the higher amount of trehalulose formed by DgAS. Our findings help to understand the inter-relationships between amylosucrase structure, flexibility, function, and stability and provide new insight for amylosucrase design.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Sacarose/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Deinococcus/genética , Dimerização , Dissacarídeos/química , Dissacarídeos/metabolismo , Estabilidade Enzimática , Frutose/química , Frutose/metabolismo , Glucose/metabolismo , Glucosiltransferases/genética , Temperatura Alta , Isomerismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Sacarose/química
7.
J Biol Chem ; 287(11): 7915-24, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22262856

RESUMO

ΔN(123)-glucan-binding domain-catalytic domain 2 (ΔN(123)-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN(123)-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite -1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN(123)-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN(123)-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN(123)-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.


Assuntos
Proteínas de Bactérias/química , Leuconostoc/enzimologia , Dobramento de Proteína , Sacarase/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dextranos/genética , Dextranos/metabolismo , Leuconostoc/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sacarase/genética , Sacarase/metabolismo
8.
Genome Res ; 20(11): 1605-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20841432

RESUMO

The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain.


Assuntos
Mineração de Dados/métodos , Fibras na Dieta/metabolismo , Enzimas/genética , Intestinos/microbiologia , Metagenoma/genética , Metagenômica/métodos , Adulto , Algoritmos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Enzimas/análise , Enzimas/isolamento & purificação , Enzimas/metabolismo , Humanos , Masculino , Metabolismo/genética , Metagenoma/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA
9.
Gut ; 61(4): 543-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22110050

RESUMO

OBJECTIVE: The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. METHODS: The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). RESULTS: Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. CONCLUSIONS: The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta Hiperlipídica , Intestinos/microbiologia , Metagenoma/fisiologia , Animais , Ceco/microbiologia , Citocinas/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Ácidos Graxos não Esterificados/sangue , Teste de Tolerância a Glucose , Absorção Intestinal/fisiologia , Lipopolissacarídeos/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Permeabilidade , Fenótipo
10.
J Am Chem Soc ; 134(45): 18677-88, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23072374

RESUMO

Iterative saturation mutagenesis and combinatorial active site saturation focused on vicinal amino acids were used to alter the acceptor specificity of amylosucrase from Neisseria polysaccharea , a sucrose-utilizing α-transglucosidase, and sort out improved variants. From the screening of three semirational sublibraries accounting in total for 20,000 variants, we report here the isolation of three double mutants of N. polysaccharea amylosucrase displaying a spectacular specificity enhancement toward both sucrose, the donor substrate, and the allyl 2-acetamido-2-deoxy-α-D-glucopyranoside acceptor as compared to the wild-type enzyme. Such levels of activity improvement have never been reported before for this class of carbohydrate-active enzymes. X-ray structure of the best performing enzymes supported by molecular dynamics simulations showed local rigidity of the -1 subsite as well as flexibility of loops involved in active site topology, which both account for the enhanced catalytic performances of the mutants. The study well illustrates the importance of taking into account the local conformation of catalytic residues as well as protein dynamics during the catalytic process, when designing enzyme libraries.


Assuntos
Aminoácidos/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Neisseria/enzimologia , Oligossacarídeos/biossíntese , Biocatálise , Estabilidade Enzimática , Variação Genética/genética , Glucosiltransferases/isolamento & purificação , Glicosilação , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação , Oligossacarídeos/química
11.
Biomacromolecules ; 13(1): 187-95, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22098057

RESUMO

Seven dextran types, displaying from 3 to 20% α(1→3) glycosidic linkages, were synthesized in vitro from sucrose by mutants of dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, obtained by combinatorial engineering. The structural and physicochemical properties of these original biopolymers were characterized. When asymmetrical flow field flow fractionation coupled with multiangle laser light scattering was used, it was determined that weight average molar masses and radii of gyration ranged from 0.76 to 6.02 × 10(8) g·mol(-1) and from 55 to 206 nm, respectively. The ν(G) values reveal that dextrans Gcn6 and Gcn7, which contain 15 and 20% α(1→3) linkages, are highly branched and contain long ramifications, while Gcn1 is rather linear with only 3% α(1→3) linkages. Others display intermediate molecular structures. Rheological investigation shows that all of these polymers present a classical non-Newtonian pseudoplastic behavior. However, Gcn_DvΔ4N, Gcn2, Gcn3, and Gcn7 form weak gels, while others display a viscoelastic behavior that is typical of entangled polymer solutions. Finally, glass transition temperature T(g) was measured by differential scanning calorimetry. Interestingly, the T(g) of Gcn1 and Gcn5 are equal to 19.0 and 29.8 °C, respectively. Because of this low T(g), these two original dextrans are able to form rubber and flexible films at ambient temperature without any plasticizer addition. The mechanical parameters determined for Gcn1 films from tensile tests are very promising in comparison to the films obtained with other polysaccharides extracted from plants, algae or microbial fermentation. These results lead the way to using these dextrans as innovative biosourced materials.


Assuntos
Proteínas de Bactérias/química , Dextranos/biossíntese , Dextranos/química , Glucosiltransferases/química , Leuconostoc/enzimologia , Mutação , Proteínas de Bactérias/genética , Configuração de Carboidratos , Glucosiltransferases/genética , Leuconostoc/genética , Engenharia de Proteínas/métodos , Viscosidade
12.
Proteins ; 79(8): 2517-29, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21656568

RESUMO

Large-scale conformational rearrangement of a lid subdomain is a key event in the interfacial activation of many lipases. We present herein a study in which the large-scale "open-to-closed" movement of Burkholderia cepacia lipase lid has been simulated at the atomic level using a hybrid computational method. The two-stage approach combines path-planning algorithms originating from robotics and molecular mechanics methods. In the first stage, a path-planning approach is used to compute continuous and geometrically feasible pathways between two protein conformational states. Then, an energy minimization procedure using classical molecular mechanics is applied to intermediate conformations in the path. The main advantage of such a combination of methods is that only geometrically feasible solutions are prompted for energy calculation in explicit solvent, which allows the atomic-scale description of the transition pathway between two extreme conformations of B. cepacia lipase (BCL; open and closed states) within very short computing times (a few hours on a desktop computer). Of interest, computed pathways enable the description of intermediate conformations along the "open-to-closed" conformational transition of BCL lid and the identification of bottlenecks during the lid closing. Furthermore, consideration of the solvent effect when computing the transition energy profiles provides valuable information regarding the feasibility and the spontaneity of the movement under the influence of the solvent environment. This new hybrid computational method turned out to be well-suited for investigating at an atomistic level large-scale conformational motion and at a qualitative level, the solvent effect on the energy profiles associated with the global motion.


Assuntos
Lipase/química , Simulação de Dinâmica Molecular , Robótica , Modelos Químicos , Conformação Proteica , Estrutura Secundária de Proteína
13.
Anal Chem ; 83(4): 1202-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21271685

RESUMO

We report here the development of a straightforward, sensitive, and quantitative NMR-based method for high-throughput characterization of carbohydrate structure and screening of carbohydrate active enzyme (CAZyme) specificity. Automated assays starting from gene library expression to carbohydrate structure determination directly from crude reaction media have been established and successfully used to screen a library of 4032 CAZymes obtained by combinatorial engineering, at a rate of 480 enzyme variants per day. This allowed one to accurately discriminate 303 enzyme variants with altered specificity. The results demonstrate the potential of high-throughput NMR technology in glycomics, to mine artificial and natural enzyme diversity for novel biocatalysts.


Assuntos
Metabolismo dos Carboidratos , Ensaios Enzimáticos/métodos , Enzimas/metabolismo , Glicômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Biocatálise , Enzimas/genética , Biblioteca Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Mutação , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Estereoisomerismo , Especificidade por Substrato
14.
Appl Environ Microbiol ; 77(15): 5307-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21666027

RESUMO

The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.


Assuntos
Dextranos/metabolismo , Fezes/microbiologia , Fermentação/fisiologia , Intestinos/microbiologia , Anaerobiose , Bacteroides/metabolismo , Bifidobacterium/metabolismo , Ácidos Graxos Voláteis/biossíntese , Humanos , Hibridização in Situ Fluorescente , Inulina/metabolismo , Prevotella/metabolismo , Ruminococcus/metabolismo
15.
Curr Microbiol ; 62(4): 1260-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21229247

RESUMO

The amplicon encoding dextransucrase DSR-F from Leuconostoc citreum B/110-1-2, a novel sucrose glucosyltransferase (GTF)-specific for α-1,6 and α-1,3 glucosidic bond synthesis, with α-1,4 branching was cloned, sequenced, and expressed into Escherichia coli JM109. Recombinant enzyme catalyzed oligosaccharides synthesis from sucrose as donor and maltose acceptor. The dsrF gene encodes for a protein (DSR-F) of 1,528 amino acids, with a theoretical molecular mass of 170447.72 Da (~170 kDa). From amino acid sequence comparison, it appears that DSR-F possesses the same domains as those described for GTFs. However, the variable region is longer than in other GTFs (by 100 amino acids) and two APY repeats (a 79 residue long motif with a high number of conserved glycine and aromatic residues, characterized by the presence of the three consecutive residues Ala, Pro, and Tyr) were identified in the glucan binding domain. The DSR-F catalytic domain possesses the catalytic triad involved in the glucosyl enzyme formation. The amino acid sequence of this domain shares a 56% identity with catalytic domain of the alternansucrase ASR from L. citreum NRRL B-1355 and with the catalytic domain of a putative alternansucrase sequence found in the genome of L. citreum KM20. A truncated active variant DSR-F-∆SP-∆GBD of 1,251 amino acids, with a molecular mass of 145 544 Da (~145 kDa), was obtained.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Leuconostoc/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Glucosiltransferases/química , Leuconostoc/química , Leuconostoc/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
16.
J Ind Microbiol Biotechnol ; 38(9): 1499-506, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21229378

RESUMO

The industrial Leuconostoc strain B/110-1-2 producing dextran and dextran derivatives was taxonomically identified by 16S rRNA as L. citreum. Its dextransucrase enzymes were characterized according to their cellular location and reaction specificity. In the presence of sucrose, the strain B/110-1-2 produced two cell-associated dextransucrases (31.54% of the total glucosyltransferase activity) with molecular weights of 160 and 240 kDa and a soluble dextransucrase (68.46%) at 160-180 kDa. Two open reading frames (ORF) coding for L. citreum strain B/110-1-2 dextransucrases were identified. One of them shared a 52% identity with the alternansucrase ASR of L. citreum NRRL B-1355 and with a putative annotated alternansucrase sequence found in the genome of L. citreum KM20. The structural analysis (HPAEC-PAD, HPSEC, and (13)C-NMR) of the polymer and oligodextrans produced by the B/110-1-2 dextransucrases suggest this novel glucansucrase has specificity similar to a dextransucrase but not to an alternansucrase, producing a soluble linear dextran with glucose molecules linked mainly in α-1,6 and α-1,3 with α-1,4 branches. These results enhance the understanding of this industrially significant strain and will aid in distinguishing between physiologically similar Leuconostoc spp. strains.


Assuntos
Dextranos/biossíntese , Glucosiltransferases/metabolismo , Leuconostoc/enzimologia , Glucosiltransferases/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Microbiologia Industrial , Leuconostoc/classificação , Leuconostoc/genética , Peso Molecular , Oligossacarídeos/biossíntese , Especificidade por Substrato , Sacarose/metabolismo
17.
Appl Environ Microbiol ; 76(8): 2684-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20173074

RESUMO

Here, we report the use of Yarrowia lipolytica as a versatile expression host for developing protein engineering approaches to modify the properties of Candida antarctica lipase B. A reliable screening protocol was defined and validated using a saturation mutagenesis library, yielding mutants displaying higher catalytic efficiencies than the wild-type enzyme.


Assuntos
Expressão Gênica , Engenharia Genética/métodos , Vetores Genéticos , Lipase/genética , Lipase/metabolismo , Mutação , Yarrowia/genética , Proteínas Fúngicas
18.
Top Curr Chem ; 294: 25-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21626747

RESUMO

Sucrose-utilizing transglucosidases are valued tools in chemistry to generate glycodiversification. Not only do these enzymes use as substrate an abundant agroresource, sucrose, but they also share a remarkable versatility regarding the acceptor substrate, allowing the structurally-controlled synthesis of diverse glucosylated products. Latest research has demonstrated the potential of enzyme engineering to tailor novel sucrose-utilizing transglucosidases that give access to original carbohydrate-based structures. This chapter gives an overview of the recent achievements in biocatalysis using these enzymes.


Assuntos
Glucosidases/metabolismo , Sacarose/metabolismo , Biocatálise , Biotecnologia
19.
Appl Microbiol Biotechnol ; 86(2): 545-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19834706

RESUMO

GBD-CD2 is an alpha-1,2 transglucosidase engineered from DSR-E, a glucansucrase naturally produced by Leuconostoc mesenteroides NRRL B-1299. This enzyme catalyses from sucrose, the alpha-1,2 transglucosylation of glucosyl moieties onto alpha-1,6 dextran chains. Steady-state kinetic studies showed that hydrolysis and transglucosylation reactions occurred at the early stage of the reaction in the presence of 70 kDa dextran as acceptor and sucrose. The transglucosylation reaction catalysed by GBD-CD2 follows a Ping Pong Bi Bi mechanism with a high kcat value of 970 s(-1). The amount of the synthesised alpha-1,2 side chains was found to be directly dependent on the initial molar ratio [Sucrose]/[Dextran]. Dextrans with controlled alpha-1,2 linkage contents ranging from 13% to 40% were synthesised. The procedure resulted in the production of dextrans with the highest content of alpha-1,2 linkages ever reported.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dextranos/metabolismo , Glucosidases/genética , Glucosidases/metabolismo , Leuconostoc/enzimologia , Dextranos/química , Glucose/metabolismo , Cinética , Sacarose/metabolismo
20.
Anaerobe ; 16(5): 493-500, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20670686

RESUMO

Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Prebióticos , Probióticos/metabolismo , Bifidobacterium/fisiologia , Fermentação , Intestinos/microbiologia , Lactobacillus/fisiologia , Oligossacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA