Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278966

RESUMO

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Assuntos
Anticorpos Biespecíficos , HIV-1 , Animais , Camundongos , Humanos , Células Matadoras Naturais , Citotoxicidade Imunológica , Morte Celular , Camundongos Transgênicos
2.
J Immunol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109927

RESUMO

Type I IFNs play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-ß Abs from PBMCs of individuals treated with IFN-α or IFN-ß, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-ß1a-specific signaling and able to block lipopolysaccharide or S100 calcium-binding protein A14-induced IFN-ß signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-ß suggests potential for diverse research and clinical applications.

3.
Bioorg Med Chem Lett ; 102: 129679, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423371

RESUMO

Seven furanochromene-quinoline derivatives containing a hydrazone linker were synthesized by condensing a furanochromene hydrazide with quinoline 2-, 3-, 4-, 5-, 6-, and 8-carbaldehydes, including 8-hydroxyquinoline-2-carbaldehye. Structure-activity correlations were investigated to determine the influence of the location of the hydrazone linker on the quinoline unit on SARS-CoV-2 Mpro enzyme inhibition. The 3-, 5-, 6- and 8-substituted derivatives showed moderate inhibition of SARS-CoV-2 Mpro with IC50 values ranging from 16 to 44 µM. Additionally, all of the derivatives showed strong interaction with the SARS-CoV-2 Mpro substrate binding pocket, with docking energy scores ranging from -8.0 to -8.5 kcal/mol. These values are comparable to that of N3 peptide (-8.1 kcal/mol) and more favorable than GC-373 (-7.6 kcal/mol) and ML-188 (-7.5 kcal/mol), all of which are known SARS-CoV-2 Mpro inhibitors. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) profiles indicate that the derivatives have good drug-likeness properties. Overall, this study highlights the potential of the furanochromene-quinoline hydrazone scaffold as a SARS-CoV-2 Mpro inhibitor.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Quinolinas , Humanos , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Quinolinas/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
4.
J Nat Prod ; 87(6): 1513-1520, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781491

RESUMO

Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.


Assuntos
Antivirais , Metabolômica , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Humanos , Cianobactérias/química , Relação Estrutura-Atividade , Ácidos Graxos/química , Ácidos Graxos/farmacologia , COVID-19 , Estrutura Molecular , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo
5.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685970

RESUMO

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

6.
RSC Adv ; 14(29): 21203-21212, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38966817

RESUMO

The coronavirus disease 2019 (COVID-19) has spread worldwide with severe health, social, and economic repercussions. Although vaccines have significantly reduced the severity of symptoms and deaths, alternative medications derived from natural products (NPs) are vital to further decrease fatalities, especially in regions with low vaccine uptake. When paired with the latest computational developments, NPs, which have been used to cure illnesses and infections for thousands of years, constitute a renewed resource for drug discovery. In the present report, a combination of computational and in vitro methods reveals the repositioning of NPs and identifies salvinorin A and deacetylgedunin (DCG) as having potential anti-SARS-CoV-2 activities. Salvinorin A was found both in silico and in vitro to inhibit both SARS-CoV-2 spike/host ACE2 protein interactions, consistent with blocking viral cell entry, and well as live virus replication. Plant extracts from Azadirachta indica and Cedrela odorata, which contain high levels of DCG, inhibited viral cell replication by targeting the main protease (Mpro) and/or inhibited viral cell entry by blocking the interaction between spike RBD-ACE2 protein at concentrations lower than salvinorin A. Our findings suggest that salvinorin A represent promising chemical starting points where further optimization may result in effective natural product-derived and potent anti-SARS-CoV-2 inhibitors to supplement vaccine efforts.

7.
iScience ; 27(8): 110501, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39171289

RESUMO

Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.

8.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746170

RESUMO

Type I interferons (IFNs) play a pivotal role in immune response modulation, yet dysregulation is implicated in various disorders. Therefore, it is crucial to develop tools that facilitate the understanding of their mechanism of action and enable the development of more effective anti-IFN therapeutic strategies. In this study, we isolated, cloned, and characterized anti-IFN-α and anti-IFN-ß antibodies (Abs) from peripheral blood mononuclear cells of individuals treated with IFN-α or IFN-ß, harboring confirmed neutralizing Abs. Clones AH07856 and AH07857 were identified as neutralizing anti-IFN-α-specific with inhibition against IFN-α2a, -α2b, and -αK subtypes. Clones AH07859 and AH07866 were identified as neutralizing anti-IFN-ß1a-specific signaling, and able to block Lipopolysaccharide or S100 calcium binding protein A14-induced IFN-ß signaling effects. Cloned Abs bind rhesus but not murine IFNs. The specificity of inhibition between IFN-α and IFN-ß suggests potential for diverse research and clinical applications.

9.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405967

RESUMO

The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRß) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRß and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.

10.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798466

RESUMO

Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor- associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket, causes cell death in TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways. A reduction of pro-tumor Rb high M2-type macrophages from TME in vivo enhanced T cell infiltration and inhibited cancer progression. We demonstrate an increased Rb expression in TAMs in women with ovarian cancer is associated with poorer prognosis. Ex vivo, we show analogous cell death induction by therapeutic Rb targeting in TAMs in post-surgery ascites from ovarian cancer patients. Overall, our data elucidates therapeutic targeting of the Rb LxCxE cleft pocket as a novel promising approach for ovarian cancer treatment through depletion of TAMs and re-shaping TME immune landscape. Statement of significance: Currently, targeting immunosuppressive myeloid cells in ovarian cancer microenvironment is the first priority need to enable successful immunotherapy, but no effective solutions are clinically available. We show that targeting LxCxE cleft pocket of Retinoblastoma protein unexpectedly induces preferential cell death in M2 tumor-associated macrophages. Depletion of immunosuppressive M2 tumor-associated macrophages reshapes tumor microenvironment, enhances anti-tumor T cell responses, and inhibits ovarian cancer. Thus, we identify a novel paradoxical function of Retinoblastoma protein in regulating macrophage viability as well as a promising target to enhance immunotherapy efficacy in ovarian cancer.

11.
Rev. argent. tuberc. enfermedades pulm. salud pública ; 47(2): 51-74, abr.-jun. 1986. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-46263

RESUMO

El Bismesilato de Almitrina, derivado triazínico, constituye el primer agente farmacológico quimico-agonista con acción alvéolo-capilar que se caracteriza por mejorar el intercambio gaseoso y la perfusión alvéolo-capilar en el curso de la bronquitis crónica. Juega por lo tanto un papel decisivo en la génesis de la hipoxemia y sus complicaciones. El efecto sobre los gases de la sangre, la acción clínica demostrada y la excelente tolerancia, abren nuevas perspectivas a los enfermos portadores de insuficiencia respiratoria crónica secundaria a la bronquitis crónica obstructiva, como no se había observado hasta el momento. El empleo diario de Almitrina ha permitido disminuir los episodios de descompensación respiratoria aguda, la poliglobulia secundaria, las reinfecciones, el tiempo de hospitalización y la disminución del empleo del oxígeno. Además, con el tiempo el enfermo comienza a disminuir la ingesta de teofilina o de los agonistas beta adrenpergicos o de los corticoides, mejorando sus condiciones de vida. La prescripción precoz de este nuevo investigadores que llevan largo tiempo con el empleo de almitrina, modifica la historia natural de la enfermedad obstructiva crónica hacia la insuficiencia respiratoria con el consiguiente beneficio para el enfermo y la comunidad que lo rodea. Además los trabajos presentados dan cuenta de la excelente tolerancia local y general de Almitrina y por lo tanto la ecuación beneficio-riesgo es ampliamente positiva. El empleo en fase IV de la farmacología clínica, dará cuenta de la importancia de este nuevo fármaco que se agrega al tratamiento de las enfermedades broncopulmonares. Los ensayos controlados que se están realizando con esta droga señalarán si las bondades terapéuticas y la seguridad de su empleo, apoyadas por numerosos trabajos de investigación preclínica y clínica, confirman lo expresado


Assuntos
Humanos , Bronquite/tratamento farmacológico , Piperazinas/uso terapêutico , Insuficiência Respiratória/tratamento farmacológico , Química , Ensaios Clínicos como Assunto , Piperazinas/farmacologia
12.
Invest. med. int ; 12(3): 203-7, oct. 1985. tab
Artigo em Espanhol | LILACS | ID: lil-27585

RESUMO

Se realizó un estudio clínico que incluyó 74 pacientes con asma bronquial, con volumen espiratorio forzado en el primer segundo (VEF1) menor de 70% del teórico y predecible y que mostraran incremento del VEF1 mayor de 15% luego de inhalar 240 mcg de isoproterenol. La medición del VEF1, después de que los pacientes recibieron una dosis única de 2 mg de tulobuterol, demostró un claro efecto broncodilatador. Se observaron aumentos del VEF1 a los 30 minutos de la primera toma, con un pico máximo dentro de las tres horas de recibida la medicación. El aumento del VEF1 fue de 23% respecto del valor basal y en algunos pacientes se mantuvo durante 12 horas. Esta respuesta fue semejante a la observada con la administración de 4 mg de salbutamol. Este estudio demuestra que no hay diferencias entre los pacientes que recibieron tulobuterol en 2 tomas diarias, respecto de los que recibieron salbutamol tres veces por día. Durante el periodo de observación no se detectaron cambios clínicos significativos tanto en los datos de laboratorio como en la frecuencia cardiaca y la presión arterial. El tulobuterol administrado en dos tomas diarias de 2 mg mostró ser un broncodilatador seguro y eficaz, con efectos semejantes a los del salbutamol administrado en tres tomas diarias de 4 mg


Assuntos
Humanos , Albuterol/uso terapêutico , Asma/tratamento farmacológico , Terbutalina/análogos & derivados , Volume Expiratório Forçado , Terbutalina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA