Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848677

RESUMO

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Assuntos
Mucosa Intestinal , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Linhagem da Célula , Regeneração , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Camundongos Endogâmicos C57BL , Homeostase
2.
bioRxiv ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39416177

RESUMO

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.

3.
Sci Immunol ; 8(85): eadf4312, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37450575

RESUMO

Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4+ T cell activation culminates in intraepithelial T cell (T-IEL)-mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls. Untreated, active, and potential CD were associated with an enrichment of activated intestinal T cell populations, including CD4+ follicular T helper (TFH) cells, regulatory T cells (Tregs), and natural CD8+ αß and γδ T-IELs. Natural CD8+ αß and γδ T-IELs expressing activating natural killer cell receptors (NKRs) exhibited a distinct TCR repertoire in CD and persisted in patients on a gluten-free diet without intestinal inflammation. Our data further show that NKR-expressing cytotoxic cells, which appear to mediate intestinal damage in CD, arise from a distinct NKR-expressing memory population of T-IELs. After gluten ingestion, both αß and γδ T cell clones from this memory population of T-IELs circulated systemically along with gluten-specific CD4+ T cells and assumed a cytotoxic and activating NKR-expressing phenotype. Collectively, these findings suggest that cytotoxic T cells in CD are rapidly mobilized in parallel with gluten-specific CD4+ T cells after gluten ingestion.


Assuntos
Doença Celíaca , Linfócitos Intraepiteliais , Humanos , Glutens , Linfócitos T Citotóxicos , Inflamação
4.
Science ; 377(6603): 276-284, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857588

RESUMO

γδ T cells represent a substantial fraction of intestinal lymphocytes at homeostasis, but they also constitute a major lymphocyte population infiltrating colorectal cancers (CRCs); however, their temporal contribution to CRC development or progression remains unclear. Using human CRC samples and murine CRC models, we found that most γδ T cells in premalignant or nontumor colons exhibit cytotoxic markers, whereas tumor-infiltrating γδ T cells express a protumorigenic profile. These contrasting T cell profiles were associated with distinct T cell receptor (TCR)-Vγδ gene usage in both humans and mice. Longitudinal intersectional genetics and antibody-dependent strategies targeting murine γδ T cells enriched in the epithelium at steady state led to heightened tumor development, whereas targeting γδ subsets that accumulate during CRC resulted in reduced tumor growth. Our results uncover temporal pro- and antitumor roles for γδ T cell subsets.


Assuntos
Neoplasias Colorretais , Citotoxicidade Imunológica , Intestinos , Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Intestinos/imunologia , Linfócitos Intraepiteliais/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia
5.
Nat Cancer ; 2(1): 98-113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928261

RESUMO

Angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma not-otherwise-specified (PTCL, NOS) have poor prognosis and lack driver actionable targets for directed therapies in most cases. Here we identify FYN-TRAF3IP2 as a recurrent oncogenic gene fusion in AITL and PTCL, NOS tumors. Mechanistically, we show that FYN-TRAF3IP2 leads to aberrant NF-κB signaling downstream of T cell receptor activation. Consistent with a driver oncogenic role, FYN-TRAF3IP2 expression in hematopoietic progenitors induces NF-κB-driven T cell transformation in mice and cooperates with loss of the Tet2 tumor suppressor in PTCL development. Moreover, abrogation of NF-κB signaling in FYN-TRAF3IP2-induced tumors with IκB kinase inhibitors delivers strong anti-lymphoma effects in vitro and in vivo. These results demonstrate an oncogenic and pharmacologically targetable role for FYN-TRAF3IP2 in PTCLs and call for the clinical testing of anti-NF-κB targeted therapies in these diseases.


Assuntos
Linfadenopatia Imunoblástica , Linfoma de Células T Periférico , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfadenopatia Imunoblástica/genética , Linfoma de Células T Periférico/genética , Camundongos , NF-kappa B/genética , Oncogenes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA