Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Glob Chang Biol ; 30(1): e17074, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273545

RESUMO

Tropical regions contain ecologically and socio-economically important habitats, and are home to about 3.8 billion people, many of which directly depend on tropical coastal waters for their well-being. At the basis of these ecosystems are biogeochemical processes. Climate change is expected to have a greater impact in the tropics compared to temperate regions because of the relatively stable environmental conditions found there. However, it was surprising to find only 660 research articles published focusing on the impact of climate change on the biogeochemistry of coastal tropical waters compared to 4823 for temperate waters. In this perspective, we highlight important topics in need of further research. Specifically, we suggest that in tropical regions compared to temperate counterparts climate change stressors will be experienced differently, that organisms have a lower acclimation capacity, and that long-term baseline biogeochemical datasets useful for quantifying future changes are lacking. The low number of research papers on the impacts of climate change in coastal tropical regions is likely due to a mix of reasons including limited resources for research and limited number of long time series in many developing tropical countries. Finally, we propose some action points that we hope will stimulate more studies in tropical coastal waters.


Assuntos
Mudança Climática , Ecossistema , Humanos , Aclimatação , Clima Tropical
2.
Environ Sci Technol ; 58(5): 2360-2372, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261758

RESUMO

Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t - 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.


Assuntos
Ácidos Nucleicos , Anaerobiose , Citometria de Fluxo , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , RNA Ribossômico 16S/genética , Reatores Biológicos , Eliminação de Resíduos Líquidos , Metano
3.
Environ Microbiol ; 25(10): 2002-2019, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286523

RESUMO

The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = -0.62 to -0.59, p = 0.001-0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = -0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.


Assuntos
Ácidos Nucleicos , Synechococcus , Oceano Índico , Organismos Aquáticos , Plâncton
4.
Environ Microbiol ; 25(5): 1007-1021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36567447

RESUMO

Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 µm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.


Assuntos
Prochlorococcus , Oceano Índico , Prochlorococcus/genética , Temperatura , Carbono , Tamanho Celular
5.
Environ Microbiol ; 23(6): 3009-3019, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33817943

RESUMO

Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 µm. Ostreococcus has been extensively studied as a model system to investigate viral-host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.


Assuntos
Fitoplâncton/virologia , Vírus , Hibridização in Situ Fluorescente , Estações do Ano , Água do Mar , Vírus/genética
6.
Environ Microbiol ; 22(5): 1930-1943, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249543

RESUMO

Compared to higher latitudes, tropical heterotrophic bacteria may be less responsive to warming because of strong bottom-up control. In order to separate both drivers, we determined the growth responses of bacterial physiological groups to temperature after adding dissolved organic matter (DOM) from mangroves, seagrasses and glucose to natural seawater from the Great Barrier Reef. Low (LNA) and high (HNA) nucleic acid content, membrane-intact (Live) and membrane-damaged (Dead) plus actively respiring (CTC+) cells were monitored for 4 days. Specific growth rates of the whole community were significantly higher (1.9 day-1 ) in the mangrove treatment relative to the rest (0.2-0.4 day-1 ) at in situ temperature and their temperature dependence, estimated as activation energy, was also consistently higher. Strong bottom-up control was suggested in the other treatments. Cell size depended more on DOM than temperature. Mangrove DOM resulted in significantly higher contributions of Live, HNA and CTC+ cells to total abundance, while the seagrass leachate reduced Live cells below 50%. Warming significantly decreased Live and CTC+ cells contributions in most treatments. Our results suggest that only in the presence of highly labile compounds, such as mangroves DOM, can we anticipate increases in heterotrophic bacteria biomass in response to warming in tropical regions.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Compostos Orgânicos/metabolismo , Bactérias/metabolismo , Temperatura Baixa , Processos Heterotróficos , Temperatura Alta , Ácidos Nucleicos/análise , Água do Mar/microbiologia , Áreas Alagadas
7.
Environ Microbiol ; 22(9): 3823-3837, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643243

RESUMO

Despite the widespread distribution of proteorhodopsin (PR)-containing bacteria in the oceans, the use of light-derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects of light on the taxonomic composition, cell integrity and growth responses of microbial communities in monthly incubations between spring and autumn under different environmental conditions. The photoheterotrophs expressing PR in situ were dominated by Pelagibacterales and SAR116 in July and November, while members of Euryarchaeota, Gammaproteobacteria and Bacteroidetes dominated the PR expression in spring. Cell-membrane integrity decreased under dark conditions throughout most of the assessment, with maximal effects in summer, under low-nutrient conditions. A positive effect of light on growth was observed in one incubation (out of nine), coinciding with a declining phytoplankton bloom. Light-enhanced growth was found in Gammaproteobacteria (Alteromonadales) and Bacteroidetes (Polaribacter and Tenacibaculum). Unexpectedly, some Pelagibacterales also exhibited higher growth rates under light conditions. We propose that the energy harvested by PRs helps to maintain cell viability in dominant coastal photoheterotrophic oligotrophs while promoting the growth of some widespread taxa benefiting from the decline of phytoplankton blooms.


Assuntos
Luz , Microbiota/fisiologia , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Membrana Celular/fisiologia , Processos Heterotróficos , Oceanos e Mares , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia , Rodopsinas Microbianas/genética , Estações do Ano
8.
Environ Microbiol ; 22(4): 1381-1396, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32090403

RESUMO

Heterotrophic bacteria associated with microphytoplankton, particularly those colonizing the phycosphere, are major players in the remineralization of algal-derived carbon. Ocean warming might impact dissolved organic carbon (DOC) uptake by microphytoplankton-associated bacteria with unknown biogeochemical implications. Here, by incubating natural seawater samples at three different temperatures, we analysed the effect of experimental warming on the abundance and C and N uptake activity of Rhodobacteraceae and Flavobacteria, two bacterial groups typically associated with microphytoplankton. Using a nano-scale secondary ion mass spectrometry (nanoSIMS) single-cell analysis, we quantified the temperature sensitivity of these two taxonomic groups to the uptake of algal-derived DOC in the microphytoplankton associated fraction with 13 C-bicarbonate and 15 N-leucine as tracers. We found that cell-specific 13 C uptake was similar for both groups (~0.42 fg C h-1 µm-3 ), but Rhodobacteraceae were more active in 15 N-leucine uptake. Due to the higher abundance of Flavobacteria associated with microphytoplankton, this group incorporated fourfold more carbon than Rhodobacteraceae. Cell-specific 13 C uptake was influenced by temperature, but no significant differences were found for 15 N-leucine uptake. Our results show that the contribution of Flavobacteria and Rhodobacteraceae to C assimilation increased up to sixfold and twofold, respectively, with an increase of 3°C above ambient temperature, suggesting that warming may differently affect the contribution of distinct copiotrophic bacterial taxa to carbon cycling.


Assuntos
Carbono/metabolismo , Diatomáceas/metabolismo , Flavobacterium/metabolismo , Aquecimento Global , Rhodobacteraceae/metabolismo , Ciclo do Carbono , Processos Heterotróficos , Água do Mar/microbiologia , Temperatura
9.
Mol Ecol ; 29(10): 1820-1838, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323882

RESUMO

Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200-1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.


Assuntos
Plâncton , Água do Mar , Oceano Atlântico , Cilióforos , Dinoflagellida , Oceano Índico , Oceano Pacífico , Plâncton/genética , RNA Ribossômico 16S/genética
10.
Environ Microbiol ; 21(4): 1482-1496, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30838751

RESUMO

The impact of grazing, resource competition and light on prokaryotic growth and taxonomic composition in subtropical and tropical surface waters were studied through 10 microcosm experiments conducted between 30°N and 30°S in the Atlantic, Pacific and Indian oceans. Under natural sunlight conditions, significant changes in taxonomic composition were only observed after the reduction of grazing by sample filtration in combination with a decrease in resource competition by sample dilution. Sunlight exposure significantly reduced prokaryote growth (11 ± 6%) and community richness (14 ± 4%) compared to continuous darkness but did not significantly change community composition. The largest growth inhibition after sunlight exposure occurred at locations showing deep mixed layers. The reduction of grazing had an expected and significant positive effect on growth, but caused a significant decrease in community richness (16 ± 6%), suggesting that the coexistence of many different OTUs is partly promoted by the presence of predators. Dilution of the grazer-free prokaryotic community significantly enhanced growth at the level of community, but consistently and sharply reduced the abundance of Prochlorococcus and SAR11 populations. The decline of these oligotrophic bacterial taxa following an increase in resource availability is consistent with their high specialization for exploiting the limited resources available in the oligotrophic warm ocean.


Assuntos
Fenômenos Fisiológicos Bacterianos , Água do Mar/microbiologia , Luz Solar , Bactérias/metabolismo , Bactérias/efeitos da radiação , Cadeia Alimentar , Oceanos e Mares
11.
Environ Microbiol ; 20(8): 2990-3000, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051643

RESUMO

The ecological status of an ecosystem can be approached by the taxa present but also by the size of individual organisms. In aquatic ecosystems, flow cytometry (FC) allows to study the individual size spectra and broad community composition through the evaluation of cytometric categories. The Red Sea represents a warm oligotrophic environment with a strong diel signal of vertically migrating mesopelagic fish, which feed at night at the surface and release dissolved organic carbon (DOC) at depth during day-time. However, knowledge about how these conditions affect the dynamics of heterotrophic prokaryotes (HP) and their coupling with DOC is lacking. Here, we analyzed a high frequency sampling over 24 h to identify the community structure and compositional changes of HP in the epipelagic and mesopelagic layers of the central Red Sea. Our results show marked vertical and diel changes in HP communities in both layers. Specifically, the relative contribution of high nucleic acid content cells was remarkably linked to changes in DOC concentration and properties. The patterns observed were likely associated to the diel vertical migration of mesopelagic fish. These findings reveal that the structure of microbial communities in warm oligotrophic environments may be more dynamic than previously thought.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Compostos Orgânicos/química , Água do Mar/química , Bactérias/classificação , Bactérias/genética , Ecossistema , Processos Heterotróficos , Oceano Índico , Filogenia , Água do Mar/microbiologia
12.
Environ Microbiol ; 20(10): 3798-3810, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30159999

RESUMO

Recent work suggests that temperature effects on marine heterotrophic bacteria are strongly seasonal, but few attempts have been made to concurrently assess them across trophic levels. Here, we estimated the temperature sensitivities (using activation energies, E) of autotrophic and heterotrophic microbial plankton net growth rates over an annual cycle in NE Atlantic coastal waters. Phytoplankton grew in winter and late autumn (0.41 ± 0.16 SE d-1 ) and decayed in the remaining months (-0.42 ± 0.10 d-1 ). Heterotrophic microbes shared a similar seasonality, with positive net growth for bacteria (0.14-1.48 d-1 ), while nanoflagellates had higher values (> 0.4 d-1 ) in winter and spring relative to the rest of the year (-0.46 to 0.29 d-1 ). Net growth rates activation energies showed similar dynamics in the three groups (-1.07 to 1.51 eV), characterized by maxima in winter, minima in summer and resumed increases in autumn. Microbial plankton E values were significantly correlated with nitrate concentrations as a proxy for nutrient availability. Nutrient-sufficiency (i.e., > 1 µmol l-1 nitrate) resulted in significantly higher activation energies of phytoplankton and heterotrophic nanoflagellates relative to nutrient-limited conditions. We suggest that only within spatio-temporal windows of both moderate bottom-up and top-down controls will temperature have a major enhancing effect on microbial growth.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fitoplâncton/metabolismo , Processos Autotróficos , Ciclo do Carbono , Ecossistema , Processos Heterotróficos , Cinética , Nutrientes/metabolismo , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento , Plâncton/crescimento & desenvolvimento , Estações do Ano , Temperatura
13.
Glob Chang Biol ; 23(9): 3956-3964, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28423463

RESUMO

Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4,000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature.


Assuntos
Processos Heterotróficos , Plâncton , Temperatura , Animais , Aquecimento Global , Oceanos e Mares , Oceano Pacífico , Microbiologia da Água
14.
Environ Microbiol ; 18(5): 1578-90, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26971724

RESUMO

Photosynthetic picoeukaryotes (PPEs) are fundamental contributors to oceanic primary production and form diverse communities dominated by prymnesiophytes, chlorophytes, pelagophytes and chrysophytes. Here, we studied the vertical distribution of these major groups in two offshore regions of the northern Iberian Peninsula during summer stratification. We performed a fine-scale vertical sampling (every ∼2 m) across the DCM and used fluorescence in situ hybridization (FISH) to determine the PPE composition and to explore the possible segregation of target groups in the light, nutrient and temperature gradients. Chlorophytes, pelagophytes and prymnesiophytes, in this order of abundance, accounted for the total PPEs recorded by flow cytometry in the Avilés canyon, and for more than half in the Galicia Bank, whereas chrysophytes were undetected. Among the three detected groups, often the prymnesiophytes were dominant in biomass. In general, all groups were present throughout the water column with abundance peaks around the DCM, but their distributions differed: pelagophytes were located deeper than the other two groups, chlorophytes presented two peaks and prymnesiophytes exhibited surface abundances comparable to those at the DCM. This study offers first indications that the vertical distribution of different PPE groups is heterogeneous within the DCM.


Assuntos
Eucariotos/fisiologia , Oceanos e Mares , Fotossíntese/fisiologia , Água do Mar/microbiologia , Biomassa , Hibridização in Situ Fluorescente , Luz
15.
Environ Microbiol ; 17(10): 3766-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25684402

RESUMO

Rare microbial taxa are increasingly recognized to play key ecological roles, but knowledge of their spatio-temporal dynamics is lacking. In a time-series study in coastal waters, we detected 83 bacterial lineages with significant seasonality, including environmentally relevant taxa where little ecological information was available. For example, Verrucomicrobia had recurrent maxima in summer, while the Flavobacteria NS4, NS5 and NS2b clades had contrasting seasonal niches. Among the seasonal taxa, only 4 were abundant and persistent, 20 cycled between rare and abundant and, remarkably, most of them (59) were always rare (contributing < 1% of total reads). We thus demonstrate that seasonal patterns in marine bacterioplankton are largely driven by lineages that never sustain abundant populations. A fewer number of rare taxa (20) also produced episodic 'blooms', and these events were highly synchronized, mostly occurring on a single month. The recurrent seasonal growth and loss of rare bacteria opens new perspectives on the temporal dynamics of the rare biosphere, hitherto mainly characterized by dormancy and episodes of 'boom and bust', as envisioned by the seed-bank hypothesis. The predictable patterns of seasonal reoccurrence are relevant for understanding the ecology of rare bacteria, which may include key players for the functioning of marine ecosystems.


Assuntos
Bactérias/crescimento & desenvolvimento , Plâncton/crescimento & desenvolvimento , Estações do Ano , Bactérias/classificação , Bactérias/genética , Ecologia , Ecossistema , Meio Ambiente , Flavobacteriaceae/crescimento & desenvolvimento , Oceanos e Mares , Plâncton/genética , RNA Ribossômico 16S , Verrucomicrobia/crescimento & desenvolvimento
16.
Environ Microbiol ; 17(10): 4133-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26189717

RESUMO

The 'cytometric diversity' of phytoplankton communities has been studied based on single-cell properties, but the applicability of this method to characterize bacterioplankton has been unexplored. Here, we analysed seasonal changes in cytometric diversity of marine bacterioplankton along a decadal time-series at three coastal stations in the Southern Bay of Biscay. Shannon-Weaver diversity estimates and Bray-Curtis similarities obtained by cytometric and molecular (16S rRNA tag sequencing) methods were significantly correlated in samples from a 3.5 year monthly time-series. Both methods showed a consistent cyclical pattern in the diversity of surface bacterial communities with maximal values in winter. The analysis of the highly resolved flow cytometry time-series across the vertical profile showed that water column mixing was a key factor explaining the seasonal changes in bacterial composition and the winter increase in bacterial diversity in coastal surface waters. Due to its low cost and short processing time as compared with genetic methods, the cytometric diversity approach represents a useful complementary tool in the macroecology of aquatic microbes.


Assuntos
Bactérias/classificação , Fitoplâncton/classificação , Estações do Ano , Água do Mar/microbiologia , Bactérias/genética , Sequência de Bases , Biodiversidade , Fitoplâncton/genética , RNA Ribossômico 16S/genética
17.
Proc Biol Sci ; 282(1810)2015 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-26063843

RESUMO

Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (-1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine food webs and carbon fluxes by an overall decrease in the efficiency of the biological pump.


Assuntos
Bactérias/crescimento & desenvolvimento , Aquecimento Global , Microbiota , Plâncton/crescimento & desenvolvimento , Água do Mar/microbiologia , Oceano Atlântico , Mudança Climática , Estações do Ano , Espanha , Temperatura
18.
Mar Environ Res ; 194: 106331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181718

RESUMO

Autotrophic and heterotrophic picoplankton play fundamental roles in marine food webs and biogeochemical cycles. However, their growth responses have seldom been jointly assessed, including many temperate regions such as the Bay of Biscay. There, previous studies have shown their relevance in carbon fluxes. We describe here the spatio-temporal variability of the abundances and growth rates of the picoplanktonic groups routinely distinguished by flow cytometry (Synechococcus and Prochlorococcus cyanobacteria, two groups of differently sized picoeukaryotes and two groups of heterotrophic bacteria distinguished by their relative nucleic acid content) in the central Cantabrian Sea (S Bay of Biscay). To that end, from February to December 2021 we collected surface water on 5 occasions from 6 stations distributed along the S Bay of Biscay (6-3°W) and incubated it after removing protistan grazers in order to determine their dynamics along the seasonal cycle as well as the inshore-offshore and the west-east gradients. Seasonal variations in initial and maximum abundances generally matched previous knowledge of the region but growth rates were more variable, with Prochlorococcus and high nucleic acid (HNA) bacteria showing the maximum values (up to 2 d-1) while negative growth was observed in one third of Synechococcus incubations. Temporal differences generally overrode differences along the inshore-offshore gradient in trophic status while in situ and maximum abundances of most of the groups generally decreased towards the east following the increase in stratification and lower nutrient availability. Responses to stratification suggest Prochlorococcus and low nucleic acid (LNA) cells may prevail among autotrophic and heterotrophic bacteria, respectively, in a warmer ocean.


Assuntos
Ácidos Nucleicos , Synechococcus , Estações do Ano , Baías , Processos Heterotróficos , Água do Mar/microbiologia
19.
Nat Commun ; 15(1): 6943, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138161

RESUMO

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr-1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.


Assuntos
Archaea , Bactérias , Biomassa , Mudança Climática , Processos Heterotróficos , Oceanos e Mares , Archaea/metabolismo , Bactérias/metabolismo , Água do Mar/microbiologia , Cadeia Alimentar , Animais , Zooplâncton/metabolismo , Carbono/metabolismo , Peixes , Células Procarióticas/metabolismo
20.
Environ Microbiol Rep ; 15(1): 31-37, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102203

RESUMO

Although bulk bacterial metabolism in response to temperature has been determined for different oceanic regions, the impact of temperature on the functional diversity of dissolved organic matter (DOM) utilization has been largely unexplored. Here, we hypothesized that besides modifying the rates of carbon utilization, temperature can also alter the diversity of substrates utilized. The patterns of utilization of 31 model DOM compounds (as represented in Biolog EcoPlate™) by bacterioplankton were assessed using inocula from surface waters of the southern Bay of Biscay continental shelf over 1 year. Bacteria utilized more polymers and carbohydrates in late spring and summer than in winter, likely reflecting changes in substrate availability linked to the release and accumulation of DOM in phytoplankton post-bloom conditions. Seawater temperature correlated positively with the number of substrates utilized (i.e. functional richness) and this relationship was maintained in monthly experimental incubations spanning 3°C below and above in situ values. The enhancement of functional richness with experimental warming displayed a unimodal response to ambient temperature, peaking at 16°C. This temperature acted as a threshold separating nutrient-sufficient from nutrient-deficient conditions at the study site, suggesting that trophic conditions will be critical in the response of microbial DOM utilization to future warming.


Assuntos
Bactérias , Matéria Orgânica Dissolvida , Temperatura , Bactérias/metabolismo , Oceanos e Mares , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA