RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.
Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Software , Metaboloma , Modelos Moleculares , Conformação ProteicaRESUMO
Signaling bias is a promising characteristic of G protein-coupled receptors (GPCRs) as it provides the opportunity to develop more efficacious and safer drugs. This is because biased ligands can avoid the activation of pathways linked to side effects whilst still producing the desired therapeutic effect. In this respect, a deeper understanding of receptor dynamics and implicated allosteric communication networks in signaling bias can accelerate the research on novel biased drug candidates. In this review, we aim to provide an overview of computational methods and techniques for studying allosteric communication and signaling bias in GPCRs. This includes (i) the detection of allosteric communication networks and (ii) the application of network theory for extracting relevant information pipelines and highly communicated sites in GPCRs. We focus on the most recent research and highlight structural insights obtained based on the framework of allosteric communication networks and network theory for GPCR signaling bias.
Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Ligantes , Receptores Acoplados a Proteínas G/metabolismoRESUMO
G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process in the human body and therefore represent an important drug targeting class. Advances in X-ray crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures of GPCRs in complex with various signaling partners. However, GPCR functionality is largely determined by their flexibility and ability to transition between distinct structural conformations. Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural motions of biological processes at atomic resolution. Thus, this technique can incorporate the missing information on protein flexibility into experimentally solved structures. Here, we review the contribution of MD simulations to complement static structural data and to improve our understanding of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to reach the full potential of this technique.
Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Animais , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Allostery, the presence of functional interactions between distant parts of proteins, is a critical concept in the field of biochemistry and molecular biology, particularly in the context of protein function and regulation. Understanding the principles of allosteric regulation is essential for advancing our knowledge of biology and developing new therapeutic strategies. This paper presents AlloViz, an open-source Python package designed to quantitatively determine, analyse, and visually represent allosteric communication networks on the basis of molecular dynamics (MD) simulation data. The software integrates well-known techniques for understanding allosteric properties simplifying the process of accessing, rationalising, and representing protein allostery and communication routes. It overcomes the inefficiency of having multiple methods with heterogeneous implementations and showcases the advantages of using MD simulations and multiple replicas to obtain statistically sound information on protein dynamics; it also enables the calculation of "consensus-like" scores aggregating methods that consider multiple structural aspects of allosteric networks. We demonstrate the features of AlloViz on two proteins: ß-arrestin 1, a key player for regulating G protein-coupled receptor (GPCR) signalling, and the protein tyrosine phosphatase 1B, an important pharmaceutical target for allosteric inhibitors. The software includes comprehensive documentation and examples, tutorials, and a user-friendly graphical interface.