Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(23): 9468-9477, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821490

RESUMO

Leukemia comprises a diverse group of bone marrow tumors marked by cell proliferation. Current diagnosis involves identifying leukemia subtypes through visual assessment of blood and bone marrow smears, a subjective and time-consuming method. Our study introduces the characterization of different leukemia subtypes using a global clustering approach of Raman hyperspectral maps of cells. We analyzed bone marrow samples from 19 patients, each presenting one of nine distinct leukemia subtypes, by conducting high spatial resolution Raman imaging on 319 cells, generating over 1.3 million spectra in total. An automated preprocessing pipeline followed by a single-step global clustering approach performed over the entire data set identified relevant cellular components (cytoplasm, nucleus, carotenoids, myeloperoxidase (MPO), and hemoglobin (HB)) enabling the unsupervised creation of high-quality pseudostained images at the single-cell level. Furthermore, this approach provided a semiquantitative analysis of cellular component distribution, and multivariate analysis of clustering results revealed the potential of Raman imaging in leukemia research, highlighting both advantages and challenges associated with global clustering.


Assuntos
Leucemia , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Leucemia/patologia , Análise por Conglomerados , Peroxidase/metabolismo
2.
J Nanobiotechnology ; 22(1): 184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622644

RESUMO

Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Leucócitos Mononucleares , Terapia Neoadjuvante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
3.
Pharmacol Res ; 196: 106934, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734460

RESUMO

Brain metastasis (BM) represents a clinical challenge for patients with advanced HER2 + breast cancer (BC). The monoclonal anti-HER2 antibody trastuzumab (TZ) improves survival of BC patients, but it has low central nervous system penetrance, being ineffective in treating BM. Previous studies showed that ferritin nanoparticles (HFn) may cross the blood brain barrier (BBB) through binding to the transferrin receptor 1 (TfR1). However, whether this has efficacy in promoting the trans-BBB delivery of TZ and combating BC BM was not studied yet. Here, we investigated the potential of HFn to drive TZ brain delivery and promote a targeted antitumor response in a murine model of BC BM established by stereotaxic injection of engineered BC cells overexpressing human HER2. HFn were covalently conjugated with TZ to obtain a nanoconjugate endowed with HER2 and TfR1 targeting specificity (H-TZ). H-TZ efficiently achieved TZ brain delivery upon intraperitoneal injection and triggered stable targeting of cancer cells. Treatment with H-TZ plus docetaxel significantly reduced tumor growth and shaped a protective brain microenvironment by engaging macrophage activation toward cancer cells. H-TZ-based treatment also avoided TZ-associated cardiotoxicity by preventing drug accumulation in the heart and did not induce any other major side effects when combined with docetaxel. These results provided in vivo demonstration of the pharmacological potential of H-TZ, able to tackle BC BM in combination with docetaxel. Indeed, upon systemic administration, the nanoconjugate guides TZ brain accumulation, reduces BM growth and limits side effects in off-target organs, thus showing promise for the management of HER2 + BC metastatic to the brain.

4.
Analyst ; 148(9): 2012-2020, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36974521

RESUMO

Lipoproteins (LPs) are multimolecular complexes of lipids and proteins responsible for transporting fatty acids, cholesterol, and micronutrients (carotenoids) through the body. The quantification of triglycerides and cholesterol carried by lipoproteins is a leading clinical parameter to assess the increased risk of cardiovascular events. However, in recent times, the study of the overall "quality" of lipoproteins, defined by their biochemical composition and oxidation state, has emerged as necessary to improve the definition of the cardiovascular risk. In this work, we present Raman spectroscopy (RS) as an effective method to immediately detect the functional groups relative to the principal biochemical components and the level of unsaturated lipids present in LPs. Furthermore, we show how RS can reveal the differences in the biochemical composition and oxidation state of LPs extracted from a cohort of obese patients (Ob) and a control group of healthy subjects (HC). In particular, RS revealed how low-density lipoproteins (LDLs) from obese patients are enriched in triglycerides and more oxidized than those from the control group, while high-density lipoproteins (HDLs) from Ob patients were depleted in cholesterol and phospholipids. RS analysis also allowed the study of the relationship between the levels of carotenoids present in the different classes of LPs highlighting how this parameter depends on the disease severity. Overall, these results demonstrated that RS is a viable approach for quickly and effectively gaining information on LPs' biochemical composition and oxidation state, providing an immediate measure of their quality. Besides, RS further proved the role of LPs in obesity and metabolic dysfunctions.


Assuntos
Lipopolissacarídeos , Análise Espectral Raman , Humanos , Voluntários Saudáveis , Lipoproteínas , Colesterol/metabolismo , Triglicerídeos , Obesidade
5.
Breast Cancer Res Treat ; 192(1): 65-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935096

RESUMO

PURPOSE: Preliminary reports suggest that extracellular vesicles (EVs) might be a promising biomarker for breast cancer (BC). However, the quantification of plasmatic levels of EVs is a complex task. To overcome these limitations, we developed a new, fast, and easy to use assay for the quantification of EVs directly in plasma based on the use of Single-Molecule Array (SiMoA). METHODS: By using SiMoA to identify CD9+/CD63+ EVs, we analyzed plasma samples of 181 subjects (95 BC and 86 healthy controls, HC). A calibration curve, made of a serial dilution of lyophilized standards from human plasma, was used in each run to ensure the obtainment of quantitative results from the assay. In a subgroup of patients, EVs concentrations were estimated in plasma before and after 30 days from cancer surgery. Additional information on the size of EVs were also acquired using a Nanosight system to obtain a clearer understanding of the mechanism underlying the releases of EVs associated with the presence of cancer. RESULTS: The measured levels of EVs resulted significantly higher in BC patients (median values 1179.1 ng/µl vs 613.0 ng/µl, p < 0.0001). ROC curve was used to define the optimal cut-off level of the test at 1034.5 ng/µl with an AUC of 0.75 [95% CI 0.68-0.82]. EVs plasmatic concentrations significantly decreased after cancer surgery compared to baseline values (p = 0.014). No correlation was found between EVs concentration and clinical features of BC. CONCLUSION: SiMoA assay allows plasmatic EVs levels detection directly without any prior processing. EVs levels are significantly higher in BC patients and significantly decreases after cancer surgery.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Biomarcadores , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Curva ROC
6.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012501

RESUMO

BACKGROUND: Bisdemethoxycurcumin (BDC) might be an inflammation inhibitor in Alzheimer's Disease (AD). However, BDC is almost insoluble in water, poorly absorbed by the organism, and degrades rapidly. We thus developed a new nanoformulation of BDC based on H-Ferritin nanocages (BDC-HFn). METHODS: We tested the BDC-HFn solubility, stability, and ability to cross a blood-brain barrier (BBB) model. We tested the effect of BDC-HFn on AD and control (CTR) PBMCs to evaluate the transcriptomic profile by RNA-seq. RESULTS: We developed a nanoformulation with a diameter of 12 nm to improve the solubility and stability. The comparison of the transcriptomics analyses between AD patients before and after BDC-HFn treatment showed a major number of DEG (2517). The pathway analysis showed that chemokines and macrophages activation differed between AD patients and controls after BDC-HFn treatment. BDC-HFn binds endothelial cells from the cerebral cortex and crosses through a BBB in vitro model. CONCLUSIONS: Our data showed how BDC-Hfn could improve the stability of BDC. Significant differences in genes associated with inflammation between the same patients before and after BDC-Hfn treatment have been found. Inflammatory genes that are upregulated between AD and CTR after BDC-HFn treatment are converted and downregulated, suggesting a possible therapeutic approach.


Assuntos
Doença de Alzheimer , Apoferritinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Diarileptanoides , Células Endoteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo
7.
J Am Chem Soc ; 143(31): 12253-12260, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320323

RESUMO

Molecular imaging techniques are essential tools for better investigating biological processes and detecting disease biomarkers with improvement of both diagnosis and therapy monitoring. Often, a single imaging technique is not sufficient to obtain comprehensive information at different levels. Multimodal diagnostic probes are key tools to enable imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging at the cellular level with a single probe is still challenging. Fluorinated (19F) probes have been increasingly showing promising potentialities for in vivo cell tracking by 19F-MRI. Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated molecule, to exhibit a remarkable intense Raman signal distinct from cell and tissue fingerprints. Therefore, PERFECTA combines in a single molecule excellent characteristics for both macroscopic in vivo 19F-MRI, across the whole body, and microscopic imaging at tissue and cellular levels by Raman imaging.


Assuntos
Hidrocarbonetos Fluorados/química , Imageamento por Ressonância Magnética , Imagem Molecular , Sondas Moleculares/química , Imagem Corporal Total , Animais , Flúor , Camundongos , Estrutura Molecular , Análise Espectral Raman
8.
Nanotechnology ; 32(29)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33831854

RESUMO

SERS tags are a class of nanoparticles with great potential in advanced imaging experiments. The preparation of SERS tags however is complex, as they suffer from the high variability of the SERS signals observed even at the slightest sign of aggregation. Here, we developed a method for the preparation of SERS tags based on the use of gold nanostars conjugated with neutravidin. The SERS tags here obtained are extremely stable in all biological buffers commonly employed and can be prepared at a relatively large scale in very mild conditions. The obtained SERS tags have been used to monitor the expression of fibroblast activation protein alpha (FAP) on the membrane of primary fibroblasts obtained from patients affected by Crohn's disease. The SERS tags allowed the unambiguous identification of FAP on the surface of cells thus suggesting the feasibility of semi-quantitative analysis of the target protein. Moreover, the use of the neutravidin-biotin system allows to apply the SERS tags for any other marker detection, for example, different cancer cell types, simply by changing the biotinylated antibody chosen in the analysis.


Assuntos
Endopeptidases/genética , Proteínas de Membrana/genética , Nanopartículas Metálicas/química , Miofibroblastos/metabolismo , Octoxinol/química , Análise Espectral Raman/métodos , Avidina/química , Biotina/química , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Endopeptidases/análise , Endopeptidases/metabolismo , Expressão Gênica , Ouro/química , Humanos , Íleo/metabolismo , Íleo/patologia , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/ultraestrutura , Miofibroblastos/patologia , Polietilenoglicóis/química , Cultura Primária de Células , Coloração e Rotulagem
9.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916703

RESUMO

Lipofilling (LF) is a largely employed technique in reconstructive and esthetic breast surgery. Over the years, it has demonstrated to be extremely useful for treatment of soft tissue defects after demolitive or conservative breast cancer surgery and different procedures have been developed to improve the survival of transplanted fat graft. The regenerative potential of LF is attributed to the multipotent stem cells found in large quantity in adipose tissue. However, a growing body of pre-clinical evidence shows that adipocytes and adipose-derived stromal cells may have pro-tumorigenic potential. Despite no clear indication from clinical studies has demonstrated an increased risk of cancer recurrence upon LF, these observations challenge the oncologic safety of the procedure. This review aims to provide an updated overview of both the clinical and the pre-clinical indications to the suitability and safety of LF in breast oncological surgery. Cellular and molecular players in the crosstalk between adipose tissue and cancer are described, and heterogeneous contradictory results are discussed, highlighting that important issues still remain to be solved to get a clear understanding of LF safety in breast cancer patients.


Assuntos
Tecido Adiposo/transplante , Neoplasias da Mama/cirurgia , Mamoplastia , Mastectomia , Recidiva Local de Neoplasia/cirurgia , Neoplasias da Mama/patologia , Feminino , Humanos
10.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045217

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

11.
Nanomedicine ; 29: 102249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599162

RESUMO

Sporadic amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which there is no validated blood based biomarker. Extracellular vesicles (EVs) have the potential to solve this unmet clinical need. However, due to their heterogeneity and complex chemical composition, EVs are difficult to study. Raman spectroscopy (RS) is an optical method that seems particularly well suited to address this task. In fact, RS provides an overview of the biochemical composition of EVs quickly and virtually without any sample preparation. In this work, we studied by RS small extracellular vesicles (sEVs), large extracellular vesicles (lEVs) and blood plasma of sporadic ALS patients and of a matched cohort of healthy controls. The obtained results highlighted lEVs as a particularly promising biomarker for ALS. In fact, their Raman spectra show that sporadic ALS patients have a different lipid content and less intense bands relative to the aromatic amino acid phenylalanine.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Biomarcadores/sangue , Vesículas Extracelulares/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Espectral Raman
12.
Molecules ; 25(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217959

RESUMO

Curcumin's pharmacological properties and its possible benefits for neurological diseases and dementia have been much debated. In vitro experiments show that curcumin modulates several key physiological pathways of importance for neurology. However, in vivo studies have not always matched expectations. Thus, improved formulations of curcumin are emerging as powerful tools in overcoming the bioavailability and stability limitations of curcumin. New studies in animal models and recent double-blinded, placebo-controlled clinical trials using some of these new formulations are finally beginning to show that curcumin could be used for the treatment of cognitive decline. Ultimately, this work could ease the burden caused by a group of diseases that are becoming a global emergency because of the unprecedented growth in the number of people aged 65 and over worldwide. In this review, we discuss curcumin's main mechanisms of action and also data from in vivo experiments on the effects of curcumin on cognitive decline.


Assuntos
Curcumina/uso terapêutico , Composição de Medicamentos , Doenças do Sistema Nervoso/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Cognição/efeitos dos fármacos , Curcumina/farmacologia , Modelos Animais de Doenças , Humanos , Doenças do Sistema Nervoso/sangue
13.
Anal Bioanal Chem ; 411(9): 1873-1885, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30155701

RESUMO

Here we describe a simple approach for the simultaneous detection of multiple microRNAs (miRNAs) using a single nanostructured reagent as surface plasmon resonance imaging (SPRi) enhancer and without using enzymatic reactions, sequence specific enhancers or multiple enhancing steps as normally reported in similar studies. The strategy involves the preparation and optimisation of neutravidin-coated gold nanospheres (nGNSs) functionalised with a previously biotinylated antibody (Ab) against DNA/RNA hybrids. The Ab guarantees the recognition of any miRNA sequence adsorbed on a surface properly functionalised with different DNA probes; at the same time, gold nanoparticles permit to detect this interaction, thus producing enough SPRi signal even at a low ligand concentration. After a careful optimisation of the nanoenhancer and after its characterisation, the final assay allowed the simultaneous detection of four miRNAs with a limit of detection (LOD) of up to 0.5 pM (equal to 275 attomoles in 500 µL) by performing a single enhancing injection. The proposed strategy shows good signal specificity and permits to discriminate wild-type, single- and triple-mutated sequences much better than non-enhanced SPRi. Finally, the method works properly in complex samples (total RNA extracted from blood) as demonstrated by the detection of four miRNAs potentially related to multiple sclerosis used as case study. This proof-of-concept study confirms that the approach provides the possibility to detect a theoretically unlimited number of miRNAs using a simple protocol and an easily prepared enhancing reagent, and may further facilitate the development of affordable multiplexing miRNA screening for clinical purposes.


Assuntos
MicroRNAs/análise , Ressonância de Plasmônio de Superfície/métodos , Adsorção , DNA/química , Enzimas/química , Indicadores e Reagentes/química , Dispositivos Lab-On-A-Chip , Ligantes , Limite de Detecção , MicroRNAs/química , Microscopia Eletrônica de Varredura , Hibridização de Ácido Nucleico , Estudo de Prova de Conceito , Propriedades de Superfície
15.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871158

RESUMO

Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo- and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Fibroblastos Associados a Câncer/efeitos dos fármacos , Nanopartículas/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Animais , Humanos , Linfócitos T Citotóxicos/efeitos dos fármacos
16.
Anal Chem ; 90(15): 8873-8880, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29972017

RESUMO

The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealing in biomedical research because of the possibility to study directly in biological fluids some of the features related to the organs from which exosomes originate. A paradigmatic example are brain-derived exosomes that can be found in plasma and used as a direct read-out of the status of the central nervous system (CNS). Inspired by recent remarkable development of plasmonic biosensors, we have designed a surface plasmon resonance imaging (SPRi) assay that, taking advantage of the fact that exosome size perfectly fits within the surface plasmon wave depth, allows the detection of multiple exosome subpopulations of neural origin directly in blood. By use of an array of antibodies, exosomes derived from neurons and oligodendrocytes were isolated and detected with good sensitivity. Subsequently, by injecting a second antibody on the immobilized vesicles, we were able to quantify the amount of CD81 and GM1, membrane components of exosomes, on each subpopulation. In this way, we have been able to demonstrate that they are not homogeneously expressed but exhibit a variable abundance according to the exosome cellular origin. These results confirm the extreme variability of exosome composition and demonstrate how SPRi can provide an effective tool for their characterization. Besides, our work paves the road toward more precise clinical studies on the use of exosomes as potential biomarkers of neurodegenerative diseases.


Assuntos
Encéfalo/citologia , Exossomos/química , Neurônios/química , Oligodendroglia/química , Plasma/química , Ressonância de Plasmônio de Superfície/métodos , Adulto , Anticorpos Imobilizados/química , Feminino , Gangliosídeo G(M1)/análise , Humanos , Masculino , Tetraspanina 28/análise
17.
Biomacromolecules ; 18(10): 3318-3330, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28886247

RESUMO

Triple negative breast cancer (TNBC) is a highly aggressive, invasive, and metastatic tumor. Although it is reported to be sensitive to cytotoxic chemotherapeutics, frequent relapse and chemoresistance often result in treatment failure. In this study, we developed a biomimetic nanodrug consisting of a self-assembling variant (HFn) of human apoferritin loaded with curcumin. HFn nanocage improved the solubility, chemical stability, and bioavailability of curcumin, allowing us to reliably carry out several experiments in the attempt to establish the potential of this molecule as a therapeutic agent and elucidate the mechanism of action in TNBC. HFn biopolymer was designed to bind selectively to the TfR1 receptor overexpressed in TNBC cells. HFn-curcumin (CFn) proved to be more effective in viability assays compared to the drug alone using MDA-MB-468 and MDA-MB-231 cell lines, representative of basal and claudin-low TNBC subtypes, respectively. Cellular uptake of CFn was demonstrated by flow cytometry and label-free confocal Raman imaging. CFn could act as a chemosensitizer enhancing the cytotoxic effect of doxorubicin by interfering with the activity of multidrug resistance transporters. In addition, CFn exhibited different cell cycle effects on these two TNBC cell lines, blocking MDA-MB-231 in G0/G1 phase, whereas MDA-MB-468 accumulated in G2/M phase. CFn was able to inhibit the Akt phosphorylation, suggesting that the effect on the proliferation and cell cycle involved the alteration of PI3K/Akt pathway.


Assuntos
Antineoplásicos/farmacologia , Apoferritinas/farmacologia , Curcumina/farmacologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Transporte Biológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Langmuir ; 32(29): 7435-41, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27367748

RESUMO

The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques.


Assuntos
Anticorpos Imobilizados/química , Ouro/química , Imunoglobulina G/química , Nanopartículas Metálicas/química , Acrilamidas/química , Animais , Coloides , Cobre/química , Coelhos
19.
Mol Pharm ; 11(8): 2864-75, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24945469

RESUMO

Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/análogos & derivados , Sistemas de Liberação de Medicamentos , Estrogênios/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Células 3T3-L1 , Animais , Apoptose , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Curcumina/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Sequestradores de Radicais Livres , Humanos , Células MCF-7 , Camundongos , Nanomedicina/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio , Espectrofotometria Ultravioleta , Análise Espectral Raman , Fatores de Tempo
20.
Discov Nano ; 19(1): 76, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691254

RESUMO

Extracellular vesicles (EVs) have mostly been investigated as carriers of biological therapeutics such as proteins and RNA. Nevertheless, small-molecule drugs of natural or synthetic origin have also been loaded into EVs, resulting in an improvement of their therapeutic properties. A few methods have been employed for EV cargo loading, but poor yield and drastic modifications of vesicles remain unsolved challenges. We tested a different strategy based on temporary pH alteration through incubation of EVs with alkaline sodium carbonate, which resulted in conspicuous exogenous molecule incorporation. In-depth characterization showed that vesicle size, morphology, composition, and uptake were not affected. Our method was more efficient than gold-standard electroporation, particularly for a potential therapeutic toxin: the plant Ribosome Inactivating Protein saporin. The encapsulated saporin resulted protected from degradation, and was efficiently conveyed to receiving cancer cells and triggered cell death. EV-delivered saporin was more cytotoxic compared to the free toxin. This approach allows both the structural preservation of vesicle properties and the transfer of protected cargo in the context of drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA