RESUMO
Aims: This study aimed to evaluate the antibacterial effect of two new cationic surfactants based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM). Materials & methods: Antibacterial activity, mechanism of action and interactions with Staphylococcus aureus enzymes were measured through microbiological, flow cytometry and molecular docking assays, respectively. Results & conclusion: These compounds showed antibacterial activity in the range of 4.06-16.24 µg/ml against planktonic cells and no activity against mature biofilms, since they caused a loss of membrane integrity and increased DNA damage, as revealed by flow cytometry analysis. In silico assays revealed the existence of molecular bonds such as hydrogen bonds, mainly with DNA. Therefore, these compounds have promising pharmacological activity against MRSA strains.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Triptofano/farmacologia , Testes de Sensibilidade Microbiana , Arginina/farmacologia , Arginina/química , Tensoativos/farmacologia , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Fenilalanina/farmacologiaRESUMO
Aim: To evaluate the activity of diclofenac sodium and synergism with oxacillin against clinical strains of SARM in plactonic cells, antibiofilm and biofilm. Materials & methods: Synergism activity was assessed using the fractional inhibitory concentration index and its possible mechanism of action by flow cytometry. Results: The synergistic activity of diclofenac sodium with oxacillin was observed against plactonic cells, antibiofilm and in biofilm formed from clinical methicillin-resistant Staphylococcus aureus strains. Conclusion: This combination caused damage to the integrity of the membrane and ruptures in the DNA of the cells, leading to apoptosis.