Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 16(5): 751-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24471657

RESUMO

Malaria parasites have two actin isoforms, ubiquitous actin1 and specialized actin2. Actin2 is essential for late male gametogenesis, prior to egress from the host erythrocyte. Here, we examined whether the two actins fulfil overlapping functions in Plasmodium berghei. Replacement of actin2 with actin1 resulted in partial complementation of the defects in male gametogenesis and, thus, viable ookinetes were formed, able to invade the midgut epithelium and develop into oocysts. However, these remained small and their DNA was undetectable at day 8 after infection. As a consequence sporogony did not occur, resulting in a complete block of parasite transmission. Furthermore, we show that expression of actin2 is tightly controlled in female stages. The actin2 transcript is translationally repressed in female gametocytes, but translated in female gametes. The protein persists until mature ookinetes; this expression is strictly dependent on the maternally derived expression. Genetic crosses revealed that actin2 functions at an early stage of ookinete formation and that parasites lacking actin2 are unable to undergo sporogony in the mosquito midgut. Our results provide insights into the specialized role of actin2 in Plasmodium development in the mosquito and suggest that the two actin isoforms have distinct biological functions.


Assuntos
Actinas/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/genética , Actinas/genética , Animais , Cruzamentos Genéticos , Culicidae/parasitologia , Teste de Complementação Genética , Mucosa Intestinal/parasitologia , Plasmodium berghei/citologia , Esporos de Protozoários/citologia
2.
Cell Microbiol ; 15(8): 1438-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23461714

RESUMO

Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress.


Assuntos
Membrana Eritrocítica/parasitologia , Células Germinativas/metabolismo , Perforina/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Fenótipo , Plasmodium berghei/efeitos dos fármacos , Saponinas/farmacologia , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/efeitos dos fármacos , Cauda do Espermatozoide/fisiologia , Cauda do Espermatozoide/ultraestrutura
3.
Cell Microbiol ; 13(11): 1714-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21790945

RESUMO

Male gametogenesis occurs directly after uptake of malaria parasites by the mosquito vector and leads to the release of eight nucleated flagellar gametes. Here, we report that one of the two parasite actin isoforms, named actin II, is essential for this process. Disruption of actin II in Plasmodium berghei resulted in viable asexual blood stages, but male gametogenesis was specifically inhibited. Upon activation, male gametocyte DNA was replicated normally and axonemes assembled, but egress from the host cell was inhibited, and axoneme motility abolished. The major actin isoform, actin I, displayed dual localization to the cytoplasm and the nucleus in male gametocytes. After activation actin I was found to be restricted to the cytoplasm. In actII(-) mutant parasites, this re-localization was abolished and actin I remained in both cellular compartments. These findings reveal vital and pleiotropic functions for the actin II isoform in male gametogenesis of the malaria parasite.


Assuntos
Actinas/metabolismo , Flagelos/fisiologia , Plasmodium berghei/fisiologia , Actinas/genética , Sequência de Aminoácidos , Animais , Núcleo Celular/química , Análise por Conglomerados , Culicidae/parasitologia , Citoplasma/química , Técnicas de Inativação de Genes , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
4.
Cell Cycle ; 10(3): 481-91, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21263216

RESUMO

Ionizing radiation (IR) triggers many signaling pathways primarily originating from either damaged DNA or non-nuclear sources such as growth factor receptors. Thus, to study the DNA damage-induced signaling component alone by irradiation would be a challenge. To generate DNA double-strand breaks (DSBs) and minimize non-nuclear signaling, human cancer cells having bromodeoxyuridine (BrdU) - substituted DNA were treated with the photosensitizer Hoechst 33258 followed by long wavelength UV (UV-A) treatment (BrdU photolysis). BrdU photolysis resulted in well-controlled, dose- dependent generation of DSBs equivalent to radiation doses between 0.2 - 20 Gy, as determined by pulsed-field gel electrophoresis, and accompanied by dose-dependent ATM (ser-1981), H2AX (ser-139), Chk2 (thr-68), and p53 (ser-15) phosphorylation. Interestingly, low levels (≤ 2 Gy equivalents) of BrdU photolysis stimulated ERK phosphorylation whereas higher (> 2 Gy eq.) resulted in ERK dephosphorylation. ERK phosphorylation was ATM-dependent whereas dephosphorylation was ATM-independent. The ATM-dependent increase in ERK phosphorylation was also seen when DSBs were generated by transfection of cells with an EcoRI expression plasmid or by electroporation of EcoRI enzyme. Furthermore, AKT was critical for transmitting the DSB signal to ERK. Altogether, our results show that low levels of DSBs trigger ATM- and AKT-dependent ERK pro-survival signaling and increased cell proliferation whereas higher levels result in ERK dephosphorylation consistent with a dose-dependent switch from pro-survival to anti-survival signaling.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Bromodesoxiuridina/química , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Fotólise , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Raios Ultravioleta
5.
Cancer Biol Ther ; 8(8): 730-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19252415

RESUMO

The epidermal growth factor receptor (EGFR) is frequently dysregulated in malignant glioma that leads to increased resistance to cancer therapy. Upregulation of wild type or expression of mutant EGFR is associated with tumor radioresistance and poor clinical outcome. EGFR variant III (EGFRvIII) is the most common EGFR mutation in malignant glioma. Radioresistance is thought to be, at least in part, the result of a strong cytoprotective response fueled by signaling via AKT and ERK that is heightened by radiation in the clinical dose range. Several groups including ours have shown that this response may modulate DNA repair. Herein, we show that expression of EGFRvIII promoted gamma-H2AX foci resolution, a surrogate for double-strand break (DSB) repair, and thus enhanced DNA repair. Conversely, small molecule inhibitors targeting EGFR, MEK, and the expression of dominant-negative EGFR (EGFR-CD533) significantly reduced the resolution of gamma-H2AX foci. When homologous recombination repair (HRR) and non-homologous end joining (NHEJ) were specifically examined, we found that EGFRvIII stimulated and CD533 compromised HRR and NHEJ, respectively. Furthermore, NHEJ was blocked by inhibitors of AKT and ERK signaling pathways. Moreover, expression of EGFRvIII and CD533 increased and reduced, respectively, the formation of phospho-DNA-PKcs and -ATM repair foci, and RAD51 foci and expression levels, indicating that DSB repair is regulated at multiple levels. Altogether, signaling from EGFR and EGFRvIII promotes both HRR and NHEJ that is likely a contributing factor towards the radioresistance of malignant gliomas.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Receptores ErbB/metabolismo , Glioma/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Receptores ErbB/genética , Glioma/genética , Glioma/patologia , Histonas/metabolismo , Humanos , Mutação/genética , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA