Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 12(2): 682-99, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24473169

RESUMO

Polyunsaturated aldehydes (PUAs) are organic compounds mainly produced by diatoms, after cell wounding. These compounds are increasingly reported as teratogenic for species of grazers and deleterious for phytoplanktonic species, but there is still scarce information regarding concentration ranges and the composition of PUAs in the open ocean. In this study, we analyzed the spatial distribution and the type of aldehydes produced by the large-sized (>10 µm) phytoplankton in the Atlantic Ocean surface. Analyses were conducted on PUAs released after mechanical disruption of the phytoplankton cells, referred to here as potential PUAs (pPUAs). Results show the ubiquitous presence of pPUA in the open ocean, including upwelling areas, as well as oligotrophic gyres. Total pPUA concentrations ranged from zero to 4.18 pmol from cells in 1 L. Identified PUAs were heptadienal, octadienal and decadienal, with heptadienal being the most common (79% of total stations). PUA amount and composition across the Atlantic Ocean was mainly related to the nitrogen:phosphorus ratio, suggesting nutrient-driven mechanisms of PUA production. Extending the range of trophic conditions considered by adding data reported for productive coastal waters, we found a pattern of PUA variation in relation to trophic status.


Assuntos
Aldeídos/isolamento & purificação , Diatomáceas/metabolismo , Fitoplâncton/metabolismo , Aldeídos/química , Oceano Atlântico
2.
Mar Drugs ; 12(3): 1438-59, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24633248

RESUMO

Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell⁻¹. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability.


Assuntos
Aldeídos/química , Diatomáceas/química , Aldeídos/metabolismo , Animais , Oceano Atlântico , Biomassa , Clorofila/química , Clorofila/metabolismo , Citometria de Fluxo , Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Região do Mediterrâneo , Fitoplâncton , Análise de Componente Principal , Estações do Ano , Água do Mar/química
3.
Sci Rep ; 8(1): 12282, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115943

RESUMO

The polyunsaturated aldehydes (PUAs) are bioactive metabolites commonly released by phytoplankton species. Based primarily on laboratory experiments, PUAs have been implicated in deleterious effects on herbivores and competing phytoplankton species or in the regulation of the rates of bacterial organic matter remineralization; however, the role of the PUAs at an ecosystem level is still under discussion. Using data of PUA production in natural phytoplankton assemblages over a wide range of conditions, we analyzed macroecological patterns aiming for a comprehensive environmental contextualization that will further our understanding of the control and ecologic role played by these compounds. PUA composition changed from the predominance of decadienal in oligotrophy, octadienal in eutrophy, and heptadienal at intermediate conditions. The production of PUAs per unit biomass also showed a strong relationship with the trophic status, sharply increasing towards oligotrophic conditions and with small-sized cells reaching the highest production rates. High ratios of dissolved inorganic nitrogen to dissolved inorganic phosphorus also promoted PUA production, albeit to a considerably lesser extent. Although the allelopathic use of PUAs to outcompete other phytoplankton or reduce herbivory may be key in some environments and interactions, the macroecological patterns found here, showing higher production towards the poorest waters and among the small species typically populating these environments, support and link at the large scale the hypotheses of the nutrient-derived stress as driver for the production of PUAs together with the use of these compounds as boosters for the nutrient remineralization.


Assuntos
Aldeídos/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Aldeídos/química , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA