Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 12(4): 352-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21399638

RESUMO

Here we report an unbiased analysis of the cytotoxic T lymphocyte (CTL) serine-threonine phosphoproteome by high-resolution mass spectrometry. We identified approximately 2,000 phosphorylations in CTLs, of which approximately 450 were controlled by T cell antigen receptor (TCR) signaling. A significantly overrepresented group of molecules identified included transcription activators, corepressors and chromatin regulators. A focus on chromatin regulators showed that CTLs had high expression of the histone deacetylase HDAC7 but continually phosphorylated and exported this transcriptional repressor from the nucleus. Dephosphorylation of HDAC7 resulted in its accumulation in the nucleus and suppressed expression of genes encoding key cytokines, cytokine receptors and adhesion molecules that determine CTL function. Screening of the CTL phosphoproteome has thus identified intrinsic pathways of serine-threonine phosphorylation that target chromatin regulators and determine the CTL functional program.


Assuntos
Histona Desacetilases/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Transdução de Sinais , Linfócitos T Citotóxicos/metabolismo , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Cromatografia Líquida , Citosol/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histona Desacetilases/genética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/genética , Fosforilação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Citotóxicos/citologia
2.
Biochem J ; 479(18): 1941-1965, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040231

RESUMO

Leucine-rich-repeat-kinase 1 (LRRK1) and its homolog LRRK2 are multidomain kinases possessing a ROC-CORA-CORB containing GTPase domain and phosphorylate distinct Rab proteins. LRRK1 loss of function mutations cause the bone disorder osteosclerotic metaphyseal dysplasia, whereas LRRK2 missense mutations that enhance kinase activity cause Parkinson's disease. Previous work suggested that LRRK1 but not LRRK2, is activated via a Protein Kinase C (PKC)-dependent mechanism. Here we demonstrate that phosphorylation and activation of LRRK1 in HEK293 cells is blocked by PKC inhibitors including LXS-196 (Darovasertib), a compound that has entered clinical trials. We show multiple PKC isoforms phosphorylate and activate recombinant LRRK1 in a manner reversed by phosphatase treatment. PKCα unexpectedly does not activate LRRK1 by phosphorylating the kinase domain, but instead phosphorylates a cluster of conserved residues (Ser1064, Ser1074 and Thr1075) located within a region of the CORB domain of the GTPase domain. These residues are positioned at the equivalent region of the LRRK2 DK helix reported to stabilize the kinase domain αC-helix in the active conformation. Thr1075 represents an optimal PKC site phosphorylation motif and its mutation to Ala, blocked PKC-mediated activation of LRRK1. A triple Glu mutation of Ser1064/Ser1074/Thr1075 to mimic phosphorylation, enhanced LRRK1 kinase activity ∼3-fold. From analysis of available structures, we postulate that phosphorylation of Ser1064, Ser1074 and Thr1075 activates LRRK1 by promoting interaction and stabilization of the αC-helix on the kinase domain. This study provides new fundamental insights into the mechanism controlling LRRK1 activity and reveals a novel unexpected activation mechanism.


Assuntos
GTP Fosfo-Hidrolases , Proteínas Serina-Treonina Quinases , Cordyceps , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases/genética
3.
J Proteome Res ; 19(7): 2732-2741, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053377

RESUMO

We reported and evaluated a microflow, single-shot, short gradient SWATH MS method intended to accelerate the discovery and verification of protein biomarkers in preclassified clinical specimens. The method uses a 15 min gradient microflow-LC peptide separation, an optimized SWATH MS window configuration, and OpenSWATH software for data analysis. We applied the method to a cohort containing 204 FFPE tissue samples from 58 prostate cancer patients and 10 benign prostatic hyperplasia patients. Altogether we identified 27,975 proteotypic peptides and 4037 SwissProt proteins from these 204 samples. Compared to a reference SWATH method with a 2 h gradient, we found 3800 proteins were quantified by the two methods on two different instruments with relatively high consistency (r = 0.77). The accelerated method consumed only 17% instrument time, while quantifying 80% of proteins compared to the 2 h gradient SWATH. Although the missing value rate increased by 20%, batch effects reduced by 21%. 75 deregulated proteins measured by the accelerated method were selected for further validation. A shortlist of 134 selected peptide precursors from the 75 proteins were analyzed using MRM-HR, and the results exhibited high quantitative consistency with the 15 min SWATH method (r = 0.89) in the same sample set. We further verified the applicability of these 75 proteins in separating benign and malignant tissues (AUC = 0.99) in an independent prostate cancer cohort (n = 154). Altogether, the results showed that the 15 min gradient microflow SWATH accelerated large-scale data acquisition by 6 times, reduced batch effect by 21%, introduced 20% more missing values, and exhibited comparable ability to separate disease groups.


Assuntos
Proteômica , Software , Biomarcadores , Humanos , Masculino , Peptídeos
4.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28871044

RESUMO

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lisofosfolipídeos/metabolismo , Melanoma/metabolismo , Fosfatidato Fosfatase/fisiologia , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Humanos , Melanoma/patologia , Invasividade Neoplásica , Neoplasias Cutâneas/patologia
6.
J Proteome Res ; 17(12): 4197-4210, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30130116

RESUMO

For the C-HPP consortium, dark proteins include not only uPE1, but also missing proteins (MPs, PE2-4), smORFs, proteins from lncRNAs, and products from uncharacterized transcripts. Here, we investigated the expression of dark proteins in the human testis by combining public mRNA and protein expression data for several tissues and performing LC-MS/MS analysis of testis protein extracts. Most uncharacterized proteins are highly expressed in the testis. Thirty could be identified in our data set, of which two were selected for further analyses: (1) A0AOU1RQG5, a putative cancer/testis antigen specifically expressed in the testis, where it accumulates in the cytoplasm of elongated spermatids; and (2) PNMA6E, which is enriched in the testis, where it is found in the germ cell nuclei during most stages of spermatogenesis. Both proteins are coded on Chromosome X. Finally, we studied the expression of other dark proteins, uPE1 and MPs, in a series of human tissues. Most were highly expressed in the testis at both the mRNA and protein levels. The testis appears to be a relevant organ to study the dark proteome, which may have a function related to spermatogenesis and germ cell differentiation. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD009598.


Assuntos
Proteoma/química , Testículo/química , Cromatografia Líquida , Mineração de Dados , Humanos , Imuno-Histoquímica , Masculino , Proteínas/análise , Proteômica/métodos , RNA Mensageiro/análise , Espectrometria de Massas em Tandem
7.
Mol Cell ; 37(5): 633-42, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227368

RESUMO

The mammalian target of rapamycin (mTOR) pathway is activated by a variety of stimuli, including nutrients such as glucose and amino acids. The Ste20 family kinase MAP4K3 is regulated by amino acids and acts upstream of mTORC1. Here we investigate how MAP4K3 activity is regulated by amino acid sufficiency. We identify a transautophosphorylation site in the MAP4K3 kinase activation segment (Ser170) that is required for MAP4K3 activity and its activation of mTORC1 signaling. Following amino acid withdrawal, Ser170 is dephosphorylated via PP2A complexed to PR61 epsilon, a PP2A-targeting subunit. Inhibition of PR61 epsilon expression prevents MAP4K3 Ser170 dephosphorylation and impairs mTORC1 inhibition during amino acid withdrawal. We propose that during amino acid sufficiency Ser170-phosphorylated MAP4K3 activates mTORC1, but that upon amino acid restriction MAP4K3 preferentially interacts with PP2A(T61 epsilon), promoting dephosphorylation of Ser170, MAP4K3 inhibition, and, subsequently, inhibition of mTORC1 signaling.


Assuntos
Aminoácidos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos/deficiência , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas , Proteínas/metabolismo , Interferência de RNA , Proteína Regulatória Associada a mTOR , Serina-Treonina Quinases TOR , Transfecção
9.
J Cell Sci ; 127(Pt 18): 3902-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015292

RESUMO

Chromatin bridges represent incompletely segregated chromosomal DNA connecting the anaphase poles and can result in chromosome breakage. The Bloom's syndrome protein helicase (BLM, also known as BLMH) suppresses formation of chromatin bridges. Here, we show that cells deficient in checkpoint kinase 1 (Chk1, also known as CHEK1) exhibit higher frequency of chromatin bridges and reduced BLM protein levels compared to controls. Chk1 inhibition leads to BLM ubiquitylation and proteasomal degradation during interphase. Furthermore, Chk1 constitutively phosphorylates human BLM at serine 502 (S502) and phosphorylated BLM localises to chromatin bridges. Mutation of S502 to a non-phosphorylatable alanine residue (BLM-S502A) reduces the stability of BLM, whereas expression of a phospho-mimicking BLM-S502D, in which S502 is mutated to aspartic acid, stabilises BLM and prevents chromatin bridges in Chk1-deficient cells. In addition, wild-type but not BLM-S502D associates with cullin 3, and cullin 3 depletion rescues BLM accumulation and localisation to chromatin bridges after Chk1 inhibition. We propose that Chk1 phosphorylates BLM-S502 to inhibit cullin-3-mediated BLM degradation during interphase. These results suggest that Chk1 prevents deleterious anaphase bridges by stabilising BLM.


Assuntos
Cromatina/metabolismo , Proteínas Quinases/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Serina/metabolismo , Motivos de Aminoácidos , Anáfase , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cromatina/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Humanos , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteólise , RecQ Helicases/genética , Serina/genética
10.
Mol Cell Proteomics ; 12(5): 1468-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23362328

RESUMO

RepoMan is a protein phosphatase 1 (PP1) regulatory subunit that targets the phosphatase to key substrates throughout the cell cycle. Most work to date has focused on the mitotic roles of RepoMan/PP1, although equally important interphase role(s) have been demonstrated. Initial mapping of the interactome of nuclear RepoMan, both endogenous and tagged, was complicated by various factors, including antibody cross-reactivity and low sensitivity of the detection of chromatin-associated partners above the high background of proteins that bind nonspecifically to affinity matrices. We therefore adapted the powerful combination of fluorescence imaging with labeling-based quantitative proteomics to map the "fragmentomes" of specific regions of RepoMan. These regions demonstrate distinct localization patterns and turnover dynamics that reflect underlying binding events. The increased sensitivity and signal-to-noise ratio provided by this unique approach facilitated identification of a large number of novel RepoMan interactors, several of which were rigorously validated in follow-up experiments, including the association of RepoMan/PP1 with a specific PP2A-B56γ complex, interaction with ribosomal proteins and import factors involved in their nucleocytoplasmic transport and interaction with proteins involved in the response to DNA damage. This same strategy can be used to investigate the cellular roles of other modular proteins.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Células HeLa , Humanos , Mitose , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteoma/química , Receptores de Neuropeptídeo Y/metabolismo
11.
Plant J ; 71(2): 263-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22404109

RESUMO

It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/ß-tubulin and is retained on GTP/taxol-stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with the likelihood of it having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between protein phosphorylation and acetylation.


Assuntos
Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Microtúbulos/enzimologia , Proteína Fosfatase 2/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/isolamento & purificação , Histona Desacetilases/genética , Histona Desacetilases/isolamento & purificação , Microcistinas/química , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/isolamento & purificação , Proteínas Recombinantes de Fusão
12.
Nucleic Acids Res ; 39(21): 9224-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21824916

RESUMO

Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Células HeLa , Humanos , Mutação , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Tolerância a Radiação , Radiação Ionizante , Serina/metabolismo
14.
EMBO J ; 27(18): 2400-10, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18756267

RESUMO

Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.


Assuntos
Dano ao DNA , Exodesoxirribonucleases/fisiologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , DNA de Cadeia Simples/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Genótipo , Modelos Biológicos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Telômero/ultraestrutura , Temperatura
15.
J Cell Biol ; 176(1): 89-100, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17190791

RESUMO

Mutations within the WNK1 (with-no-K[Lys] kinase-1) gene cause Gordon's hypertension syndrome. Little is known about how WNK1 is regulated. We demonstrate that WNK1 is rapidly activated and phosphorylated at multiple residues after exposure of cells to hyperosmotic conditions and that activation is mediated by the phosphorylation of its T-loop Ser382 residue, possibly triggered by a transautophosphorylation reaction. Activation of WNK1 coincides with the phosphorylation and activation of two WNK1 substrates, namely, the protein kinases STE20/SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Small interfering RNA depletion of WNK1 impairs SPAK/OSR1 activity and phosphorylation of residues targeted by WNK1. Hyperosmotic stress induces rapid redistribution of WNK1 from the cytosol to vesicular structures that may comprise trans-Golgi network (TGN)/recycling endosomes, as they display rapid movement, colocalize with clathrin, adaptor protein complex 1 (AP-1), and TGN46, but not the AP-2 plasma membrane-coated pit marker nor the endosomal markers EEA1, Hrs, and LAMP1. Mutational analysis suggests that the WNK1 C-terminal noncatalytic domain mediates vesicle localization. Our observations shed light on the mechanism by which WNK1 is regulated by hyperosmotic stress.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Sorbitol/farmacologia , Sequência de Aminoácidos , Animais , Domínio Catalítico/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clatrina/metabolismo , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/enzimologia , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Pressão Osmótica , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Transporte Proteico/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
16.
J Biol Chem ; 285(24): 18276-82, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20400509

RESUMO

Signal transduction by Toll-like receptor 2 (TLR2) and TLR4 requires the adaptors MyD88 and Mal (MyD88 adaptor-like) and serine/threonine kinases, interleukin-1 receptor-associated kinases IRAK1 and IRAK4. We have found that both IRAK1 and IRAK4 can directly phosphorylate Mal. In addition, co-expression of Mal with either IRAK resulted in depletion of Mal from cell lysates. This is likely to be due to Mal phosphorylation by the IRAKs because kinase-inactive forms of either IRAK had no effect. Furthermore, lipopolysaccharide stimulation resulted in ubiquitination and degradation of Mal, which was inhibited using an IRAK1/4 inhibitor or by knocking down expression of IRAK1 and IRAK4. MyD88 is not a substrate for either IRAK and did not undergo degradation. We therefore conclude that Mal is a substrate for IRAK1 and IRAK4 with phosphorylation promoting ubiquitination and degradation of Mal. This process may serve to negatively regulate signaling by TLR2 and TLR4.


Assuntos
Regulação da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Mielina/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteolipídeos/metabolismo , Linhagem Celular , Humanos , Lipopolissacarídeos/química , Espectrometria de Massas/métodos , Modelos Biológicos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Fosforilação , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Ubiquitina/química
17.
J Biol Chem ; 285(25): 19324-9, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20388717

RESUMO

Small ubiquitin-like modifier (SUMO) is conjugated to its substrates via an enzymatic cascade consisting of three enzymes, E1, E2, and E3. The active site of the E2 enzyme, Ubc9, recognizes the substrate through binding to a consensus tetrapeptide PsiKXE. However, recent proteomics studies suggested that a considerable part of sumoylation occurs on non-consensus sites. Current unbiased sumoylation site identification techniques typically require high stoichiometry in vitro sumoylation, mass spectrometry, and complex data analysis. To facilitate in vivo analysis, we have designed a mass spectrometric method based on an engineered human SUMO-1 construct that creates a signature tag on SUMO substrates. This construct enables affinity purification by covalent binding to cysteine residues in LysC/trypsin-cleaved peptides and site identification by diglycyl lysine tagging of sumoylation sites. As a proof of concept, site-specific and substrate-unbiased in vivo sumoylation analysis of HeLa cells was performed. We identified 14 sumoylation sites, including well known sites, such as Lys(524) of RanGAP1, and novel non-consensus sites. Only 3 of the 14 sites matched consensus sites, supporting the emerging view that non-consensus sumoylation is a common event in live cells. Six of the non-consensus sites had a nearby SUMO interaction motif (SIM), which emphasizes the role of SIM in non-consensus sumoylation. Nevertheless, the lack of nearby SIM residues among the remaining non-consensus sites indicates that there are also other specificity determinants of non-consensus sumoylation. The method we have developed proved to be a useful tool for sumoylation studies and will facilitate identification of novel SUMO substrates containing both consensus and non-consensus sites.


Assuntos
Cisteína/química , Proteômica/métodos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/isolamento & purificação , Motivos de Aminoácidos , Cromatografia Líquida/métodos , Células HeLa , Humanos , Lisina/química , Espectrometria de Massas/métodos , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Tripsina/química , Ubiquitina/química
18.
Nat Cell Biol ; 5(7): 647-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12792650

RESUMO

Many pro-apoptotic signals activate caspase-9, an initiator protease that activates caspase-3 and downstream caspases to initiate cellular destruction. However, survival signals can impinge on this pathway and suppress apoptosis. Activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) pathway is associated with protection of cells from apoptosis and inhibition of caspase-3 activation, although the targets are unknown. Here, we show that the ERK MAPK pathway inhibits caspase-9 activity by direct phosphorylation. In mammalian cell extracts, cytochrome c-induced activation of caspases-9 and -3 requires okadaic-acid-sensitive protein phosphatase activity. The opposing protein kinase activity is overcome by treatment with the broad-specificity kinase inhibitor staurosporine or with inhibitors of MEK1/2. Caspase-9 is phosphorylated at Thr 125, a conserved MAPK consensus site targeted by ERK2 in vitro, in a MEK-dependent manner in cells stimulated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). Phosphorylation at Thr 125 is sufficient to block caspase-9 processing and subsequent caspase-3 activation. We suggest that phosphorylation and inhibition of caspase-9 by ERK promotes cell survival during development and tissue homeostasis. This mechanism may also contribute to tumorigenesis when the ERK MAPK pathway is constitutively activated.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Células Eucarióticas/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases/genética , Caspase 3 , Caspase 9 , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Grupo dos Citocromos c/efeitos dos fármacos , Grupo dos Citocromos c/metabolismo , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Células Eucarióticas/efeitos dos fármacos , Células HeLa , Humanos , MAP Quinase Quinase 1 , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/farmacologia , Proteínas Recombinantes de Fusão , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Treonina/metabolismo
19.
Mol Cell Proteomics ; 8(11): 2487-99, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19648646

RESUMO

We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.


Assuntos
Proteínas 14-3-3/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica/métodos , Actinas/química , Apoptose , Sítios de Ligação , Cromatografia Líquida/métodos , Células HeLa , Humanos , Espectrometria de Massas/métodos , Modelos Biológicos , Peptídeos/química , Proteoma , Transdução de Sinais , Tripsina/química
20.
JACS Au ; 1(6): 750-765, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254058

RESUMO

Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA