Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(1): 73-87, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819623

RESUMO

Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of outer nuclear membrane KASH proteins, interacting in the nuclear envelope lumen with inner nuclear membrane SUN proteins and connecting the nucleus and cytoskeleton. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and abscisic acid (ABA), which requires F-actin reorganization. SINE2 influences actin depolymerization and SINE1 actin repolymerization. The actin-related protein 2/3 (ARP2/3) complex, an actin nucleator, and the plant actin-bundling and -stabilizing factor SCAB1 are involved in stomatal aperture control. Here, we have tested the genetic interaction of SINE1 and SINE2 with SCAB1 and the ARP2/3 complex. We show that SINE1 and the ARP2/3 complex function in the same pathway during ABA-induced stomatal closure, while SINE2 and the ARP2/3 complex play opposing roles. The actin repolymerization defect observed in sine1-1 is partially rescued in scab1-2 sine1-1, while SINE2 is epistatic to SCAB1. In addition, SINE1 and ARP2/3 act synergistically in lateral root development. The absence of SINE2 renders trichome development independent of the ARP2/3 complex. Together, these data reveal complex and differential interactions of the two KASH proteins with the actin-remodeling apparatus and add evidence to the proposed differential role of SINE1 and SINE2 in actin dynamics.


Assuntos
Actinas , Proteínas de Arabidopsis , Actinas/metabolismo , Proteínas de Plantas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Nuclear/metabolismo
2.
Plant Physiol ; 182(2): 1100-1113, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31767690

RESUMO

Stomatal movement, which regulates gas exchange in plants, is controlled by a variety of environmental factors, including biotic and abiotic stresses. The stress hormone abscisic acid (ABA) initiates a signaling cascade, which leads to increased H2O2 and Ca2+ levels and F-actin reorganization, but the mechanism of, and connection between, these events is unclear. SINE1, an outer nuclear envelope component of a plant Linker of Nucleoskeleton and Cytoskeleton complex, associates with F-actin and is, along with its putative paralog SINE2, expressed in guard cells. Here, we have determined that Arabidopsis (Arabidopsis thaliana) SINE1 and SINE2 play an important role in stomatal opening and closing. Loss of SINE1 or SINE2 results in ABA hyposensitivity and impaired stomatal dynamics but does not affect stomatal closure induced by the bacterial elicitor flg22. The ABA-induced stomatal closure phenotype is, in part, attributed to impairments in Ca2+ and F-actin regulation. Together, the data suggest that SINE1 and SINE2 act downstream of ABA but upstream of Ca2+ and F-actin. While there is a large degree of functional overlap between the two proteins, there are also critical differences. Our study makes an unanticipated connection between stomatal regulation and nuclear envelope-associated proteins, and adds two new players to the increasingly complex system of guard cell regulation.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Transdução de Sinais/genética , Ácido Abscísico/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Secas , Peróxido de Hidrogênio/toxicidade , Microscopia Confocal , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Tiazolidinas/toxicidade , Regulação para Cima
3.
Front Plant Sci ; 13: 784342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599883

RESUMO

The linker of nucleoskeleton and cytoskeleton (LINC) complex is a protein complex spanning the inner and outer membranes of the nuclear envelope. Outer nuclear membrane KASH proteins interact in the nuclear envelope lumen with inner nuclear membrane SUN proteins. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and ABA. Previous studies have shown F-actin organization, cytoplasmic calcium (Ca2+) oscillations, and vacuolar morphology changes are involved in ABA-induced stomatal closure. Here, we show that SINE1 and SINE2 are both required for actin pattern changes during ABA-induced stomatal closure, but influence different, temporally distinguishable steps. External Ca2+ partially overrides the mutant defects. ABA-induced cytoplasmic Ca2+ oscillations are diminished in sine2-1 but not sine1-1, and this defect can be rescued by both exogenous Ca2+ and F-actin depolymerization. We show first evidence for nuclear Ca2+ oscillations during ABA-induced stomatal closure, which are disrupted in sine2-1. Vacuolar fragmentation is impaired in both mutants and is partially rescued by F-actin depolymerization. Together, these data indicate distinct roles for SINE1 and SINE2 upstream of this network of players involved in ABA-based stomatal closure, suggesting a role for the nuclear surface in guard cell ABA signaling.

4.
Front Plant Sci ; 11: 575573, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324432

RESUMO

Abscisic acid (ABA) induces stomatal closure by utilizing complex signaling mechanisms, allowing for sessile plants to respond rapidly to ever-changing environmental conditions. ABA regulates the activity of plasma membrane ion channels and calcium-dependent protein kinases, Ca2+ oscillations, and reactive oxygen species (ROS) concentrations. Throughout ABA-induced stomatal closure, the cytoskeleton undergoes dramatic changes that appear important for efficient closure. However, the precise role of this cytoskeletal reorganization in stomatal closure and the nature of its regulation are unknown. We have recently shown that the plant KASH proteins SINE1 and SINE2 are connected to actin organization during ABA-induced stomatal closure but their role in microtubule (MT) organization remains to be investigated. We show here that depolymerizing MTs using oryzalin can restore ABA-induced stomatal closure deficits in sine1-1 and sine2-1 mutants. GFP-MAP4-visualized MT organization is compromised in sine1-1 and sine2-1 mutants during ABA-induced stomatal closure. Loss of SINE1 or SINE2 results in loss of radially organized MT patterning in open guard cells, aberrant MT organization during stomatal closure, and an overall decrease in the number of MT filaments or bundles. Thus, SINE1 and SINE2 are necessary for establishing MT patterning and mediating changes in MT rearrangement, which is required for ABA-induced stomatal closure.

5.
Nucleus ; 11(1): 149-163, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32631106

RESUMO

Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Matriz Nuclear/metabolismo , Tubo Polínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/citologia , Tubo Polínico/citologia , Transdução de Sinais
6.
Nucleus ; 11(1): 330-346, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161800

RESUMO

The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Estreptófitas/metabolismo , Proteínas de Membrana/genética , Membrana Nuclear/genética , Proteínas de Plantas/genética , Estreptófitas/genética
7.
J Mol Biol ; 432(14): 4076-4091, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32442659

RESUMO

All retroviruses encode a Gag polyprotein containing an N-terminal matrix domain (MA) that anchors Gag to the plasma membrane and recruits envelope glycoproteins to virus assembly sites. Membrane binding by the Gag protein of HIV-1 and most other lentiviruses is dependent on N-terminal myristoylation of MA by host N-myristoyltransferase enzymes (NMTs), which recognize a six-residue "myristoylation signal" with consensus sequence: M1GXXX[ST]. For unknown reasons, the feline immunodeficiency virus (FIV), which infects both domestic and wild cats, encodes a non-consensus myristoylation sequence not utilized by its host or by other mammals (most commonly: M1GNGQG). To explore the evolutionary basis for this sequence, we compared the structure, dynamics, and myristoylation properties of native FIV MA with a mutant protein containing a consensus feline myristoylation motif (MANOS) and examined the impact of MA mutations on virus assembly and ability to support spreading infection. Unexpectedly, myristoylation efficiency of MANOS in Escherichia coli by co-expressed mammalian NMT was reduced by ~70% compared to the wild-type protein. NMR studies revealed that residues of the N-terminal myristoylation signal are fully exposed and mobile in the native protein but partially sequestered in the MANOS chimera, suggesting that the unusual FIV sequence is conserved to promote exposure and efficient myristoylation of the MA N terminus. In contrast, virus assembly studies indicate that the MANOS mutation does not affect virus assembly, but does prevent virus spread, in feline kidney cells. Our findings indicate that residues of the FIV myristoylation sequence play roles in replication beyond NMT recognition and Gag-membrane binding.


Assuntos
Produtos do Gene gag/genética , Vírus da Imunodeficiência Felina/genética , Ácido Mirístico/metabolismo , Montagem de Vírus/genética , Sequência de Aminoácidos/genética , Animais , Gatos , Linhagem Celular , Membrana Celular/genética , Membrana Celular/virologia , HIV-1/genética , Humanos , Mutação/genética , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA