Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(28): eadg8287, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436994

RESUMO

Quasar-driven outflows on galactic scales are a routinely invoked ingredient for galaxy formation models. We report the discovery of ionized gas nebulae surrounding three luminous red quasars at z ~ 0.4 from Gemini integral field unit observations. All these nebulae feature unprecedented pairs of "superbubbles" extending ~20 kpc in diameter, and the line-of-sight velocity difference between the red- and blueshifted bubbles reaches up to ~1200 km/s. Their spectacular dual-bubble morphology (in analogy to the galactic "Fermi bubbles") and their kinematics provide unambiguous evidence for galaxy-wide quasar-driven outflows, in parallel with the quasi-spherical outflows similar in size from luminous type 1 and type 2 quasars at concordant redshift. These bubble pairs manifest themselves as a signpost of the short-lived superbubble "break-out" phase, when the quasar wind drives the bubbles to escape the confinement from the dense environment and plunge into the galactic halo with a high-velocity expansion.

2.
Nat Commun ; 14(1): 781, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774356

RESUMO

The eROSITA bubbles are detected via the instrument with the same name. The northern bubble shows noticeable asymmetric features, including distortion to the west and enhancement in the eastern edge, while the southern counterpart is significantly dimmer. Their origins are debated. Here, we performed hydrodynamic simulations showing that asymmetric eROSITA bubbles favor a dynamic, circumgalactic medium wind model, but disfavor other mechanisms such as a non-axisymmetric halo gas or a tilted nuclear outflow. The wind from the east by north direction in Galactic coordinates blows across the northern halo with a velocity of about 200 km s-1, and part of it enters the southern halo. This creates a dynamic halo medium and redistributes both density and metallicity within. This naturally explains the asymmetric bubbles in both the morphology and surface brightness. Our results suggest that our Galaxy is accreting low-abundance circumgalactic medium from one side while providing outflow feedback.

3.
Sci Adv ; 8(6): eabk3291, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148189

RESUMO

Quasar outflows may play a crucial role in regulating the host galaxy, although the spatial scale of quasar outflows remain a major enigma, with their acceleration mechanism poorly understood. The kinematic information of outflow is the key to understanding its origin and acceleration mechanism. Here, we report the galactocentric distances of different outflow components for both a sample and an individual quasar. We find that the outflow distance increases with velocity, with a typical value from several parsecs to more than one hundred parsecs, providing direct evidence for an acceleration happening at a scale of the order of 10 parsecs. These outflows carry ∼1% of the total quasar energy, while their kinematics are consistent with a dust-driven model with a launching radius comparable to the scale of a dusty torus, indicating that the coupling between dust and quasar radiation may produce powerful feedback that is crucial to galaxy evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA