Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biotechnol Appl Biochem ; 70(3): 1279-1290, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36580629

RESUMO

This work aimed to produce porous poly-hydroxybutyrate (PHB) pellets in order to evaluate the pellets as a support for immobilization of the metagenomic lipase, LipG9. Four types of pelletized PHB particles with different morphological characteristics were obtained using the double emulsion and solvent evaporation technique (DESE). The micropores of these PHB pellets had similar average diameters (about 3 nm), but the pellets had different specific surface areas: 11.7 m2 g-1 for the PHB powder, 8.4 m2  g-1 for the control pellets (Ø < 0.5 mm, produced without the pore forming agent), 10.0 m2  g-1 for the small pellets (Ø < 0.5 mm), 9.5 m2  g-1 for the medium pellets (0.5 < Ø < 0.8 mm) and 8.4 m2  g-1 for the large pellets (Ø > 1.4 mm). Purified LipG9 was immobilized by adsorption on these pellets, and the results were compared with those obtained with PHB powder. The highest immobilization yield (83%) was obtained for the medium PHB pellets, followed by large (76%) and small (55%) PHB pellets. The activity of LipG9 immobilized on the pellets, for the synthesis of ethyl oleate in n-hexane, was highest for the medium pellets (22 U g-1 ). The immobilization yield was high for PHB powder (99%) but the esterification activity was slightly lower (20 U g-1 ). These results show that pelletized PHB beads can be used for the immobilization of lipases, with the advantage that pelletized PHB will perform better than PHB powder in large-scale enzyme bioreactors.


Assuntos
Hidroxibutiratos , Lipase , Emulsões , Poliésteres , Porosidade , Pós , Solventes
2.
J Biol Chem ; 293(19): 7397-7407, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29581233

RESUMO

NADH (NAD+) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD+ also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD+ biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD+ synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadENH3 and octameric glutamine-dependent NadEGln, and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadEGln in bacteria. Substrate preferences and structural analyses suggested that dimeric NadEGln enzymes may constitute evolutionary intermediates between dimeric NadENH3 and octameric NadEGln The characterization of additional NadE isoforms in the diazotrophic bacterium Azospirillum brasilense along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes.


Assuntos
Adaptação Fisiológica , Azospirillum brasilense/enzimologia , Evolução Biológica , Glutamina/metabolismo , Herbaspirillum/enzimologia , Mycobacterium tuberculosis/enzimologia , Amida Sintases/química , Amida Sintases/metabolismo , Sequência de Aminoácidos , Amônia/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiologia , Catálise , Herbaspirillum/metabolismo , Herbaspirillum/fisiologia , Cinética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , NAD/metabolismo , Filogenia , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
Plant Mol Biol ; 94(6): 625-640, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674938

RESUMO

KEY MESSAGE: Herbaspirillum rubrisubalbicans decreases growth of rice. Inoculation of rice with H. rubrisubalbicans increased the ACCO mRNA levels and ethylene production. The H. rubrisubalbicans rice interactions were further characterized by proteomic approach. Herbaspirillum rubrisubalbicans is a well-known growth-promoting rhizobacteria that can also act as a mild phyto-pathogen. During colonisation of rice, RT-qPCR analyses showed that H. rubrisubalbicans up-regulates the methionine recycling pathway as well as phyto-siderophore synthesis genes. mRNA levels of ACC oxidase and ethylene levels also increased in rice roots but inoculation with H. rubrisubalbicans impaired growth of the rice plant. A proteomic approach was used to identify proteins specifically modulated by H. rubrisubalbicans in rice and amongst the differentially expressed proteins a V-ATPase and a 14-3-3 protein were down-regulated. Several proteins of H. rubrisubalbicans were identified, including the type VI secretion system effector Hcp1, suggesting that protein secretion play a role colonisation in rice. Finally, the alkyl hydroperoxide reductase, a primary scavenger of endogenous hydrogen peroxide was also identified. Monitoring the levels of reactive oxygen species in the epiphytic bacteria by flow cytometry revealed that H. rubrisubalbicans is subjected to oxidative stress, suggesting that the alkyl hydroperoxide reductase is an important regulator of redox homeostasis in plant-bacteria interactions.


Assuntos
Etilenos/metabolismo , Herbaspirillum/patogenicidade , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
5.
J Vis Exp ; (191)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715403

RESUMO

This paper describes a novel, simple, and low-cost device to perform in vitro photodynamic therapy (PDT) assays, named the PhotoACT. The device was built using a set of conventional programmable light-emitting diodes (LEDs), a liquid crystal display (LCD) module, and a light sensor connected to a commercial microcontroller board. The box-based structure of the prototype was made with medium-density fiberboards (MDFs). The internal compartment can simultaneously allocate four cell culture multiwell microplates. As a proof of concept, we studied the cytotoxic effect of the photosensitizer (PS) verteporfin against the HeLa cell line in two-dimensional (2D) culture. HeLa cells were treated with increasing concentrations of verteporfin for 24 h. The drug-containing supernatant medium was discarded, the adherent cells were washed with phosphate-buffered saline (PBS), and drug-free medium was added. In this study, the effect of verteporfin on cells was examined either without light exposure or after exposure for 1 h to light using red-green-blue (RGB) values of 255, 255, and 255 (average fluence of 49.1 ± 0.6 J/cm2). After 24 h, the cell viability was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. Experimental results showed that exposure of cells treated with verteporfin to the light from the device enhances the drug's cytotoxic effect via a mechanism mediated by reactive oxygen species (ROS). In addition, the use of the prototype described in this work was validated by comparing the results with a commercial PDT device. Thus, this LED-based photodynamic therapy prototype represents a good alternative for in vitro studies of PDT.


Assuntos
Antineoplásicos , Fotoquimioterapia , Humanos , Verteporfina/farmacologia , Células HeLa , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Técnicas de Cultura de Células
6.
EXCLI J ; 22: 1155-1172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38204967

RESUMO

A current clinical challenge in cancer is multidrug resistance (MDR) mediated by ABC transporters. Breast cancer resistance protein (BCRP) or ABCG2 transporter is one of the most important ABC transporters implicated in MDR and the use of inhibitors is a promising approach to overcome the resistance in cancer. This study aimed to characterize the molecular mechanism of ABCG2 inhibitors identified by a repurposing drug strategy using antiviral, anti-inflammatory and antiparasitic agents. Lopinavir and ivermectin can be considered as pan-inhibitors of ABC transporters, since both compounds inhibited ABCG2, P-glycoprotein and MRP1. They inhibited ABCG2 activity showing IC50 values of 25.5 and 23.4 µM, respectively. These drugs were highly cytotoxic and not transported by ABCG2. Additionally, these drugs increased the 5D3 antibody binding and did not affect the mRNA and protein expression levels. Cell-based analysis of the type of inhibition suggested a non-competitive inhibition, which was further corroborated by in silico approaches of molecular docking and molecular dynamics simulations. These results showed an overlap of the lopinavir and ivermectin binding sites on ABCG2, mainly interacting with E446 residue. However, the substrate mitoxantrone occupies a different site, binding to the F436 region, closer to the L554/L555 plug. In conclusion, these results revealed the mechanistic basis of lopinavir and ivermectin interaction with ABCG2. See also the Graphical abstract(Fig. 1).

7.
Int J Biochem Mol Biol ; 14(4): 51-61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736389

RESUMO

Type 1 diabetes mellitus (T1DM), associated with autoimmune destruction of pancreatic ß cells, is observed in children and adolescents. OBJECTIVE: We investigated the potential association of the apolipoprotein M (APOM) polymorphisms rs707921, rs805264, rs805296, rs805297, and rs9404941 in childhood-onset T1DM (n = 144) and compared them to those in healthy (mostly Euro-Brazilian) children (n = 168). METHODS: This project was approved by the Ethics Committee of the Federal University of Parana (CAAE 24676613.6.0000.0102). Genotyping was performed using PCR-restriction fragment length polymorphisms (rs805296 and rs9404941) and TaqMan probes (rs707921, rs805264, and rs805297). RESULTS: All polymorphisms were in Hardy-Weinberg equilibrium. In the codominant model, no significant differences (P > 0.05) were observed in genotype and allele frequencies between healthy controls and children with T1DM. The minor allele frequencies (95% CI) for healthy subjects were rs707921 (A, 10.7%; 7-14%), rs805264 (A, 6.5%; 4-9%), rs805296 (C, 3.6%; 2-6%), rs805297 (A, 22.6%; 22-31%), and rs9404941 (C, 2.7%; 1-4%). The frequencies of the rs805297 A allele and rs805296 C allele were similar to those of other Caucasian populations; both the rs707921 and rs805264 A alleles were similar to American and Latin American populations, whereas that of the rs9404941 C allele was lower than that observed in the Caucasian and Asian populations. CONCLUSIONS: Haplotype analysis suggests that rs805297-C, rs9404941-T, rs805296-T, rs805264-G, and rs707921-C conferred risk (OR: 4.25; 95% CI: 1.81-10.1) to childhood-onset T1DM in the Euro-Brazilian population.

8.
Pharmaceutics ; 15(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111745

RESUMO

Inhibition of ABC transporters is a promising approach to overcome multidrug resistance in cancer. Herein, we report the characterization of a potent ABCG2 inhibitor, namely, chromone 4a (C4a). Molecular docking and in vitro assays using ABCG2 and P-glycoprotein (P-gp) expressing membrane vesicles of insect cells revealed that C4a interacts with both transporters, while showing selectivity toward ABCG2 using cell-based transport assays. C4a inhibited the ABCG2-mediated efflux of different substrates and molecular dynamic simulations demonstrated that C4a binds in the Ko143-binding pocket. Liposomes and extracellular vesicles (EVs) of Giardia intestinalis and human blood were used to successfully bypass the poor water solubility and delivery of C4a as assessed by inhibition of the ABCG2 function. Human blood EVs also promoted delivery of the well-known P-gp inhibitor, elacridar. Here, for the first time, we demonstrated the potential use of plasma circulating EVs for drug delivery of hydrophobic drugs targeting membrane proteins.

9.
Eur J Med Chem ; 237: 114346, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483322

RESUMO

The primary source of failure of cancer therapies is multidrug resistance (MDR), which can be caused by different mechanisms, including the overexpression of ABC transporters in cancer cells. Among the 48 human ABC proteins, the breast cancer resistance protein (BCRP/ABCG2) has been described as a pivotal player in cancer resistance. The use of functional inhibitors and expression modulators is a promising strategy to overcome the MDR caused by ABCG2. Despite the lack of clinical trials using ABCG2 inhibitors, many compounds have already been discovered. This review presents an overview about various ABCG2 inhibitors that have been identified, discussing some chemical aspects and the main experimental methods used to identify and characterize the mechanisms of new inhibitors. In addition, some biological requirements to pursue preclinical tests are described. Finally, we discuss the potential use of ABCG2 inhibitors in cancer stem cells (CSC) for improving the objective response rate and the mechanism of ABCG2 modulators at transcriptional and protein expression levels.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos
10.
Chem Biol Interact ; 351: 109718, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34717915

RESUMO

The ABCG2 transporter plays a pivotal role in multidrug resistance, however, no clinical trial using specific ABCG2 inhibitors have been successful. Although ABC transporters actively extrude a wide variety of substrates, photodynamic therapeutic agents with porphyrinic scaffolds are exclusively transported by ABCG2. In this work, we describe for the first time a porphyrin derivative (4B) inhibitor of ABCG2 and capable to overcome multidrug resistance in vitro. The inhibition was time-dependent and 4B was not itself transported by ABCG2. Independently of the substrate, the porphyrin 4B showed an IC50 value of 1.6 µM and a mixed type of inhibition. This compound inhibited the ATPase activity and increased the binding of the conformational-sensitive antibody 5D3. A thermostability assay confirmed allosteric protein changes triggered by the porphyrin. Long-timescale molecular dynamics simulations revealed a different behavior between the ABCG2 porphyrinic substrate pheophorbide a and the porphyrin 4B. Pheophorbide a was able to bind in three different protein sites but 4B showed one binding conformation with a strong ionic interaction with GLU446. The inhibition was selective toward ABCG2, since no inhibition was observed for P-glycoprotein and MRP1. Finally, this compound successfully chemosensitized cells that overexpress ABCG2. These findings reinforce that substrates may be a privileged source of chemical scaffolds for identification of new inhibitors of multidrug resistance-linked ABC transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Porfirinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Irinotecano/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos
11.
FEBS Lett ; 596(3): 381-399, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939198

RESUMO

A promising strategy to overcome multidrug resistance is the use of inhibitors of ABC drug transporters. For this reason, we evaluated the polyoxovanadates (POVs) [V10 O28 ]6- (V10 ), [H6 V14 O38 (PO4 )]5- (V14 ), [V15 O36 Cl]6- (V15 ) and [V18 O42 I]7- (V18 ) as inhibitors of three major multidrug resistance-linked ABC transporters: P-glycoprotein (P-gp), ABCG2 and MRP1. All of the POVs selectively inhibited P-gp. V10 and V18 were the two most promising compounds, with IC50 values of transport inhibition of 25.4 and 22.7 µm, respectively. Both compounds inhibited P-gp ATPase activity, with the same IC50 value of 1.26 µm. V10 and V18 triggered different conformational changes in the P-gp protein with time-dependent inhibition, which was confirmed using the synthesized salt of V10 with rhodamine B, RhoB-V10 . The hydrophilic nature of POVs supports the hypothesis that these compounds target an unusual ligand-binding site, opening new possibilities in the development of potent modulators of ABC transporters.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP
12.
Sci Rep ; 11(1): 1788, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469044

RESUMO

The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Indóis/química , Relação Estrutura-Atividade
13.
Int J Biol Macromol ; 137: 442-454, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254575

RESUMO

LipMF3 is a new lipase isolated from a metagenomic library derived from a fat-contaminated soil. It belongs to the lipase subfamily I.1 and has identities of 68% and 67% with lipases of Chromobacterium violaceum and C. amazonense, respectively. Genes encoding LipMF3 and its cognate foldase, LifMF3, were cloned and co-expressed in Escherichia coli. The highest hydrolytic activity of purified Lip-LifMF3 was at 40 °C and pH 6.5. Under these conditions, the highest activity was against tributyrin (1650 U mg-1), but it also had high activity against olive oil (862 U mg-1). It was stable in hydrophilic organic solvents (25%, v/v in water) with residual activity around 100% after 24 h. It also showed stability over a wide pH range (5.5 to 11) with residual activity above 80% after 24 h. Lip-LifMF3 was immobilized by covalent bonding onto Immobead 150P and by adsorption onto Sepabeads FP-BU. The latter preparation gave the best results, producing 94% conversion after 5 h for the synthesis of ethyl oleate and a 90% enantiomeric excess of the product (R)­1­phenylethyl acetate for the kinetic resolution of (R,S)­1­phenyl­1­ethanol. The results obtained in this work provide a basis for the development of applications of Lip-LifMF3 in biocatalysis.


Assuntos
Ácidos Graxos/análise , Biblioteca Gênica , Lipase/química , Lipase/metabolismo , Metagenoma , Microbiologia do Solo , Solo/química , Sequência de Aminoácidos , Chromobacterium/enzimologia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Conformação Proteica , Solventes/farmacologia , Temperatura , Triglicerídeos/metabolismo
14.
Sci Rep ; 8(1): 10000, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968752

RESUMO

We determined the effect of the His-tag on the structure, activity, stability and immobilization of LipC12, a highly active lipase from a metagenomic library. We purified LipC12 with a N-terminal His-tag and then removed the tag using tobacco etch virus (TEV) protease. Circular dichroism analysis showed that the overall structure of LipC12 was largely unaffected by His-tag removal. The specific hydrolytic activities against natural and artificial substrates were significantly increased by the removal of the His-tag. On the other hand, His-tagged LipC12 was significantly more active and stable in the presence of polar organic solvents than untagged LipC12. The immobilization efficiency on Immobead 150 was 100% for both forms of LipC12 and protein desorption studies confirmed that the His-tag does not participate in the covalent binding of the enzyme. In the case of immobilized LipC12, the His-tag negatively influenced the hydrolytic activity, as it had for the free lipase, however, it positively influenced the esterification activity. These results raise the possibility of tailoring recombinant lipases for different applications, where the His-tag may be retained or removed, as appropriate for the desired activity.


Assuntos
Marcadores de Afinidade/química , Lipase/isolamento & purificação , Lipase/metabolismo , Enzimas Imobilizadas/química , Esterificação , Engenharia Genética/métodos , Hidrólise , Lipase/genética , Metagenômica/métodos , Solventes
15.
Rev. bras. anal. clin ; 53(2): 138-142, 20210630. ilus
Artigo em Português | LILACS | ID: biblio-1348698

RESUMO

A pandemia da COVID-19 tem tido um impacto devastador em todo o mundo e levou ao rápido desenvolvimento de testes diagnósticos. Diferentes tecnologias vêm sendo utilizadas para a detecção de imunoglobulinas frente à infecção por SARS-CoV-2. Ensaios imunoenzimáticos (ELISA), quimioluminescentes e imunocromatográficos estão disponíveis e, no geral, apresentam poder diagnóstico limitado, principalmente para a detecção de IgA. A citometria de fluxo tem surgido como alternativa para o desenvolvimento de métodos sensíveis e específicos para a COVID-19 aplicados para diagnóstico, triagem e estratificação da doença. A citometria de fluxo é uma tecnologia óptica baseada em laser que detecta características físico-químicas de células ou partículas em um fluido heterogêneo. O artigo explora a citometria de fluxo para o diagnóstico da COVID-19 em duas estratégias para a detecção de anticorpos no soro ou plasma, uma utilizando antígenos virais expressos na superfície de células de mamíferos e outra com estes elementos imobilizados em microesferas (beads). A possibilidade de detecção rápida de múltiplos anticorpos simultaneamente, com pequeno volume de amostra e elevada sensibilidade e especificidade, torna a citometria de fluxo uma metodologia promissora para o laboratório clínico, como ferramenta de referência para auxiliar na contenção do processo pandêmico da COVID-19 e futuros eventos similares.


The COVID-19 pandemic has had a devastating impact around the world and has led to the rapid development of diagnostic tests. Different technologies have been used to detect immunoglobulins produced against SARS-CoV-2 infection. Immunoenzymatic (ELISA), chemiluminescent and immunochromatographic assays are available and, in general, they have limited diagnostic accuracy, especially for the detection of IgA. Flow cytometry has emerged as an alternative for the development of sensitive and specific methods for COVID-19 applied for diagnosis, screening and stratification of the disease. Flow cytometry is a laser-based optical technology that detects physicochemical characteristics of cells or particles in a heterogeneous fluid. The article explores flow cytometry for the diagnosis of COVID-19 in two strategies for detecting antibodies in serum or plasma, the first one using viral antigens expressed on the surface of mammalian cells and the other one with these elements immobilized on microspheres (beads). The possibility of rapid detection of multiple antibodies simultaneously, with a small sample volume and high sensitivity and specificity, makes flow cytometry a promising methodology for the clinical laboratory, as a reference tool to help stop the COVID-19 pandemic process and similar future events.


Assuntos
Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Citometria de Fluxo , SARS-CoV-2 , COVID-19
16.
Rev. bras. anal. clin ; 52(4): 337-345, 20201230. tab, ilus
Artigo em Português | LILACS | ID: biblio-1223688

RESUMO

Em humanos, o pH sanguíneo é mantido em uma faixa estreita, entre 7,35 e 7,45. Diferentes mecanismos bioquímicos, de forma harmônica, atuam para a manutenção do pH fisiológico. Múltiplos processos patológicos podem promover alterações no pH e nos gases sanguíneos, caracterizando acidose (pH <7,35) ou alcalose (pH >7,45). A ruptura da homeostasia do pH é identificada pela medição do pH, pressão parcial de dióxido de carbono (pCO2), concentração do bicarbonato (HCO3-) e, adicionalmente, com a pressão de oxigênio (pO2) em sangue arterial, processo descrito como gasometria arterial. Este artigo revisa os principais elementos associados a compreensão das alterações e tem como objetivo central apresentar uma abordagem didática e intuitiva para a caracterização destes distúrbios; e também comenta sobre ferramentais digitais destinadas a interpretações das alterações da gasometria arterial que também são abordados, como programas para computadores em ambiente web e aplicativos para telefonia móvel.


In humans, blood pH is kept in a narrow range, between 7.35 to 7.45. Different biochemical mechanisms, in a harmonic way, act to maintain the physiological pH. Multiple pathological processes can promote changes in pH and blood gases, characterizing acidosis (pH <7.35) or alkalosis (pH> 7.45). The rupture of pH homeostasis is identified by measuring pH, partial pressure of carbon dioxide (pCO2), bicarbonate concentration (HCO3 - and, in addition, with the pressure of oxygen (pO2) in arterial blood, a process described as gasometry arterial. This article reviews the main elements associated with the understanding of acid-base changes and aims to present a didactic and intuitive approach to the characterization of these disorders; and also comments on digital tools for the interpretation of alterations in arterial blood gases are also covered, such as programs for computers in a web environment and applications for mobile phone.


Assuntos
Valores de Referência , Desequilíbrio Ácido-Base , Gasometria , Software , Aplicativos Móveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA