Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mod Pathol ; : 100556, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964502

RESUMO

Recently, low HER2 protein expression has been proposed as a predictive biomarker for response to antibody-drug conjugate trastuzumab deruxtecan (T-DXd) in metastatic breast cancer. HER2 expression in non-small cell lung cancer (NSCLC) patients has never been carefully measured, and little is known about the frequency of cases with unamplified but detectable levels of the protein. Although some HER2-targeted therapies have been studied in NSCLC patients, they have been restricted to those with genomic ERBB2 gene alterations, which only represent relatively rare cases of NSCLC. Still, emerging investigations of T-DXd in NSCLC have shown promise in patients with unamplified HER2. Taken together, we hypothesize that there may be many cases of NSCLC with levels of HER2 protein expression comparable to levels seen in breast cancer who benefit from T-DXd. Here, we used a previously validated, analytic, quantitative immunofluorescence (QIF) assay that is more sensitive than legacy clinical HER2 immunohistochemistry assays. We measured HER2 protein levels in NSCLC cases to determine the proportion of cases with detectable HER2 expression. Using cell line calibration microarrays alongside our QIF method enabled us to convert HER2 signal into units of attomoles per mm2. We found that over 63% of the 741 analyzed NSCLC cases exhibited HER2 expression above the limit of detection, with more than 17% of them exceeding the lower limit of quantification. While the threshold for response to T-DXd in breast cancer is still unknown, many cases of NSCLC have expression in a range comparable to breast cancer cases with immunohistochemistry scores of 1+ or 2+. Our assay could potentially select NSCLC cases with detectable target (i.e., HER2) that might benefit from HER2 antibody-drug conjugates, irrespective of ERBB2 genomic alterations.

2.
Mol Cancer ; 22(1): 182, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964379

RESUMO

BACKGROUND: Stimulating inflammatory tumor associated macrophages can overcome resistance to PD-(L)1 blockade. We previously conducted a phase I trial of cabiralizumab (anti-CSF1R), sotigalimab (CD40-agonist) and nivolumab. Our current purpose was to study the activity and cellular effects of this three-drug regimen in anti-PD-1-resistant melanoma. METHODS: We employed a Simon's two-stage design and analyzed circulating immune cells from patients treated with this regimen for treatment-related changes. We assessed various dose levels of anti-CSF1R in murine melanoma models and studied the cellular and molecular effects. RESULTS: Thirteen patients were enrolled in the first stage. We observed one (7.7%) confirmed and one (7.7%) unconfirmed partial response, 5 patients had stable disease (38.5%) and 6 disease progression (42.6%). We elected not to proceed to the second stage. CyTOF analysis revealed a reduction in non-classical monocytes. Patients with prolonged stable disease or partial response who remained on study for longer had increased markers of antigen presentation after treatment compared to patients whose disease progressed rapidly. In a murine model, higher anti-CSF1R doses resulted in increased tumor growth and worse survival. Using single-cell RNA-sequencing, we identified a suppressive monocyte/macrophage population in murine tumors exposed to higher doses. CONCLUSIONS: Higher anti-CSF1R doses are inferior to lower doses in a preclinical model, inducing a suppressive macrophage population, and potentially explaining the disappointing results observed in patients. While it is impossible to directly infer human doses from murine studies, careful intra-species evaluation can provide important insight. Cabiralizumab dose optimization is necessary for this patient population with limited treatment options. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03502330.


Assuntos
Anticorpos Monoclonais , Melanoma , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Nivolumabe/uso terapêutico , Melanoma/patologia , Receptores Proteína Tirosina Quinases
3.
Mod Pathol ; 36(7): 100197, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105494

RESUMO

Our understanding of the biology and management of human disease has undergone a remarkable evolution in recent decades. Improved understanding of the roles of complex immune populations in the tumor microenvironment has advanced our knowledge of antitumor immunity, and immunotherapy has radically improved outcomes for many advanced cancers. Digital pathology has unlocked new possibilities for the assessment and discovery of the tumor microenvironment, such as quantitative and spatial image analysis. Despite these advances, tissue-based evaluations for diagnosis and prognosis continue to rely on traditional practices, such as hematoxylin and eosin staining, supplemented by the assessment of single biomarkers largely using chromogenic immunohistochemistry (IHC). Such approaches are poorly suited to complex quantitative analyses and the simultaneous evaluation of multiple biomarkers. Thus, multiplex staining techniques have significant potential to improve diagnostic practice and immuno-oncology research. The different approaches to achieve multiplexed IHC and immunofluorescence are described in this study. Alternatives to multiplex immunofluorescence/IHC include epitope-based tissue mass spectrometry and digital spatial profiling (DSP), which require specialized platforms not available to most clinical laboratories. Virtual multiplexing, which involves digitally coregistering singleplex IHC stains performed on serial sections, is another alternative to multiplex staining. Regardless of the approach, analysis of multiplexed stains sequentially or simultaneously will benefit from standardized protocols and digital pathology workflows. Although this is a complex and rapidly advancing field, multiplex staining is now technically feasible for most clinical laboratories and may soon be leveraged for routine diagnostic use. This review provides an update on the current state of the art for tissue multiplexing, including the capabilities and limitations of different techniques, with an emphasis on potential relevance to clinical diagnostic practice.


Assuntos
Neoplasias , Patologistas , Humanos , Imuno-Histoquímica , Imunofluorescência , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/patologia , Biomarcadores , Corantes , Biomarcadores Tumorais/análise , Microambiente Tumoral
4.
Lab Invest ; 102(10): 1143-1149, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35581307

RESUMO

Immune checkpoint blockade with programmed cell death (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors has resulted in significant progress in the treatment of various cancer types. However, not all patients respond to PD-1/PD-L1 blockade, underscoring the importance of identifying new potential targets for immunotherapy. One promising target is the immune system modulator Siglec-15. In this study, we assess Siglec-15 expression in solid tumors, with a focus on lung, breast, head and neck squamous and bladder cancers. Using quantitative immunofluorescence (QIF) with a previously validated antibody, we found increased Siglec-15 expression in both tumor and immune cells in all the four cancer types. Siglec-15 was seen to be predominantly expressed by the stromal immune cells (83% in lung, 70.1% in breast, 95.2% in head and neck squamous cell and 89% in bladder cancers). Considerable intra-tumoral heterogeneity was noted across cancer types. As previously described for non-small cell lung cancer (NSCLC), Siglec-15 expression was seen to be mutually exclusive to PD-L1 in all the four cancer types, although this differential expression was maintained but somewhat diminished in head and neck squamous cell carcinoma (HNSCC). Siglec-15 was not prognostic either for overall survival (OS) or progression-free survival (PFS). In summary, we show broad expression of this potential immune modulatory target in a wide range of cancer types. These data suggest potential future clinical trials in these tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Receptor de Morte Celular Programada 1 , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Bexiga Urinária/tratamento farmacológico
5.
Lab Invest ; 102(10): 1101-1108, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595825

RESUMO

The efficacy of the antibody drug conjugate (ADC) Trastuzumab deruxtecan (T-DXd) in HER2 low breast cancer patients suggests that the historical/conventional assays for HER2 may need revision for optimal patient care. Specifically, the conventional assay is designed to distinguish amplified HER2 from unamplified cases but is not sensitive enough to stratify the lower ranges of HER2 expression. Here we determine the optimal dynamic range for unamplified HER2 detection in breast cancer and then redesign an assay to increase the resolution of the assay to stratify HER2 expression in unamplified cases. We used the AQUA™ method of quantitative immunofluorescence to test a range of antibody concentrations to maximize the sensitivity within the lower range of HER2 expression. Then, using a cell line microarray with HER2 protein measured by mass spectrometry we determined the amount of HER2 protein in units of attomols/mm2. Then by calculation of the limits of detection, quantification, and linearity of this assay we determined that low HER2 range expression in unamplified cell lines is between 2 and 20 attomol/mm2. Finally, application of this assay to a serial collection of 364 breast cancer cases from Yale shows 67% of the population has HER2 expression above the limit of quantification and below the levels seen in HER2 amplified breast cancer. In the future, this assay could be used to determine the levels of HER2 required for response to T-DXd or similar HER2 conjugated ADCs.


Assuntos
Neoplasias da Mama , Imunoconjugados , Neoplasias da Mama/genética , Feminino , Humanos , Receptor ErbB-2/análise , Receptor ErbB-2/genética
6.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409020

RESUMO

Melanoma is an aggressive malignant tumor, arising more commonly on the skin, while it can also occur on mucosal surfaces and the uveal tract of the eye. In the context of the unresectable and metastatic cases that account for the vast majority of melanoma-related deaths, the currently available therapeutic options are of limited value. The exponentially increasing knowledge in the field of molecular biology has identified epigenetic reprogramming and more specifically histone deacetylation (HDAC), as a crucial regulator of melanoma progression and as a key driver in the emergence of drug resistance. A variety of HDAC inhibitors (HDACi) have been developed and evaluated in multiple solid and hematologic malignancies, showing promising results. In melanoma, various experimental models have elucidated a critical role of histone deacetylases in disease pathogenesis. They could, therefore, represent a promising novel therapeutic approach for advanced disease. A number of clinical trials assessing the efficacy of HDACi have already been completed, while a few more are in progress. Despite some early promising signs, a lot of work is required in the field of clinical studies, and larger patient cohorts are needed in order for more valid conclusions to be extracted, regarding the potential of HDACi as mainstream treatment options for melanoma.


Assuntos
Inibidores de Histona Desacetilases , Melanoma , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia
7.
Breast Cancer Res ; 23(1): 113, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906209

RESUMO

PURPOSE: Triple negative breast cancer (TNBC) is more common in African American (AA) than Non-AA (NAA) population. We hypothesize that tumor microenvironment (TME) contributes to this disparity. Here, we use multiplex quantitative immunofluorescence to characterize the expression of immunologic biomarkers in the TME in both populations. PATIENTS AND METHODS: TNBC tumor resection specimen tissues from a 100-patient case: control cohort including 49 AA and 51 NAA were collected. TME markers including CD45, CD14, CD68, CD206, CD4, CD8, CD20, CD3, Ki67, GzB, Thy1, FAP, aSMA, CD34, Col4, VWF and PD-L1 we quantitatively assessed in every field of view. Mean expression levels were compared between cases and controls. RESULTS: Although no significant differences were detected in individual lymphoid and myeloid markers, we found that infiltration with CD45+ immune cells (p = 0.0102) was higher in TNBC in AA population. AA TNBC tumors also had significantly higher level of lymphocytic infiltration defined as CD45+ CD14- cells (p = 0.0081). CD3+ T-cells in AA tumors expressed significantly higher levels of Ki67 (0.0066) compared to NAAs, indicating that a higher percentage of AA tumors contained activated T-cells. All other biomarkers showed no significant differences between the AA and NAA group. CONCLUSIONS: While the TME in TNBC is rich in immune cells in both racial groups, there is a numerical increase in lymphoid infiltration in AA compared to NAA TNBC. Significantly, higher activated T cells seen in AA patients raises the possibility that there may be a subset of AA patients with improved response to immunotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Negro ou Afro-Americano , Biomarcadores Tumorais , Estudos de Casos e Controles , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
8.
Mod Pathol ; 34(7): 1261-1270, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33536573

RESUMO

Ki67, a nuclear proliferation-related protein, is heavily used in anatomic pathology but has not become a companion diagnostic or a standard-of-care biomarker due to analytic variability in both assay protocols and interpretation. The International Ki67 Working Group in breast cancer has published and has ongoing efforts in the standardization of the interpretation of Ki67, but they have not yet assessed technical issues of assay production representing multiple sources of variation, including antibody clones, antibody formats, staining platforms, and operators. The goal of this work is to address these issues with a new standardization tool. We have developed a cell line microarray system in which mixes of human Karpas 299 or Jurkat cells (Ki67+) with Sf9 (Spodoptera frugiperda) (Ki67-) cells are present in incremental standardized ratios. To validate the tool, six different antibodies, including both ready-to-use and concentrate formats from six vendors, were used to measure Ki67 proliferation indices using IHC protocols for manual (bench-top) and automated platforms. The assays were performed by three different laboratories at Yale and analyzed using two image analysis software packages, including QuPath and Visiopharm. Results showed statistically significant differences in Ki67 reactivity between each antibody clone. However, subsets of Ki67 assays using three clones performed in three different labs show no significant differences. This work shows the need for analytic standardization of the Ki67 assay and provides a new tool to do so. We show here how a cell line standardization system can be used to normalize the staining variability in proliferation indices between different antibody clones in a triple negative breast cancer cohort. We believe that this cell line standardization array has the potential to improve reproducibility among Ki67 assays and laboratories, which is critical for establishing Ki67 as a standard-of-care assay.


Assuntos
Biomarcadores Tumorais/análise , Imuno-Histoquímica/normas , Antígeno Ki-67/análise , Índice Mitótico/normas , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade
9.
BMC Med Genet ; 20(1): 23, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665372

RESUMO

BACKGROUND: Hereditary amyloidosis refers to a wide spectrum of rare diseases with different causative mutations in the genes of various proteins including transthyretin, apolipoprotein AI and AII, gelsolin, lysozyme, cystatin C, fibrinogen Aα-chain, ß2-microglobulin, apolipoprotein CII and CIII. CASE PRESENTATION: Among hereditary amyloidosis subtypes, we describe here a specific case of Apolipoprotein AI amyloidosis (AApoAI), where the diagnosis began from an almost asymptomatic hepatomegaly followed by the development of primary hypogonadism. Baseline laboratory tests showed increased liver enzymes, while imaging tests revealed a suspected infiltrative liver disease. Patient underwent into liver biopsy and histological examination detected the presence of periodic acid-Schiff (-) and Congo-red (+) amorphous eosinophilic material within normal liver tissue. In the typing of amyloid by immunoelectron microscopy, the liver appeared heavily infiltrated by anti-apoAI (+) amyloid fibrils. Gene sequencing and mutational analysis revealed a single-base mutation at position c.251 T > C resulting in an amino acid substitution from leucine to proline in the mature ApoAI protein. This amino acid change led to lower cleavage and ApoAI deposition into the involved organs. Few years later, our patient remaining without treatment, came with symptoms consistent with primary hypogonadism but testicular involvement with ApoAI deposits could not be proven since the patient refused testicular biopsy. Based on this case, we recap the diagnostic challenges, the clinical manifestations, and the potential treatment options for this indolent hereditary amyloidosis subtype. CONCLUSIONS: This case-report enlarges the clinical picture of ApoAI-driven disease and its complex genetic background and in parallel suggests for a more systematic approach in any case with strong suspicion of hereditary amyloidosis.


Assuntos
Amiloidose Familiar/diagnóstico , Apolipoproteína A-I/genética , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Amiloidose Familiar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
11.
Life (Basel) ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38929657

RESUMO

Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.

12.
J Immunother Cancer ; 12(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857914

RESUMO

BACKGROUND: Despite the impressive outcomes with immune checkpoint inhibitor (ICI) in non-small cell lung cancer (NSCLC), only a minority of the patients show long-term benefits from ICI. In this study, we used retrospective cohorts of ICI treated patients with NSCLC to discover and validate spatially resolved protein markers associated with resistance to programmed cell death protein-1 (PD-1) axis inhibition. METHODS: Pretreatment samples from 56 patients with NSCLC treated with ICI were collected and analyzed in a tissue microarray (TMA) format in including four different tumor regions per patient using the GeoMx platform for spatially informed transcriptomics. 34 patients had assessable tissue with tumor compartment in all 4 TMA spots, 22 with leukocyte compartment and 12 with CD68 compartment. The patients' tissue that was not assessable in fourfold redundancy in each compartment was designated as the validation cohort; cytokeratin (CK) (N=22), leukocytes CD45 (N=31), macrophages, CD68 (N=43). The human whole transcriptome, represented by~18,000 individual genes assessed by oligonucleotide-tagged in situ hybridization, was sequenced on the NovaSeq platform to quantify the RNAs present in each region of interest. RESULTS: 54,000 gene variables were generated per case, from them 25,740 were analyzed after removing targets with expression lower than a prespecified frequency. Cox proportional-hazards model analysis was performed for overall and progression-free survival (OS, PFS, respectively). After identifying genes significantly associated with limited survival benefit (HR>1)/progression per spot per patient, we used the intersection of them across the four TMA spots per patient. This resulted in a list of 12 genes in the tumor-cell compartment (RPL13A, GNL3, FAM83A, CYBA, ACSL4, SLC25A6, EPAS1, RPL5, APOL1, HSPD1, RPS4Y1, ADI1). RPL13A, GNL3 in tumor-cell compartment were also significantly associated with OS and PFS, respectively, in the validation cohort (CK: HR, 2.48; p=0.02 and HR, 5.33; p=0.04). In CD45 compartment, secreted frizzled-related protein 2, was associated with OS in the discovery cohort but not in the validation cohort. Similarly, in the CD68 compartment ARHGAP and PNN interacting serine and arginine rich protein were significantly associated with PFS and OS, respectively, in the majority but not all four spots per patient. CONCLUSION: This work highlights RPL13A and GNL3 as potential indicative biomarkers of resistance to PD-1 axis blockade that might help to improve precision immunotherapy strategies for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Perfilação da Expressão Gênica , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Feminino , Imunoterapia/métodos , Pessoa de Meia-Idade , Resistencia a Medicamentos Antineoplásicos/genética , Idoso , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Biomarcadores Tumorais/genética
13.
Oral Oncol ; 152: 106750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547779

RESUMO

PURPOSE: The prognostic and predictive significance of pathologist-read tumor infiltrating lymphocytes (TILs) in head and neck cancers have been demonstrated through multiple studies over the years. TILs have not been broadly adopted clinically, perhaps due to substantial inter-observer variability. In this study, we developed a machine-based algorithm for TIL evaluation in head and neck cancers and validated its prognostic value in independent cohorts. EXPERIMENTAL DESIGN: A network classifier called NN3-17 was trained to identify and calculate tumor cells, lymphocytes, fibroblasts and "other" cells on hematoxylin-eosin stained sections using the QuPath software. These measurements were used to construct three predefined TIL variables. A retrospective collection of 154 head and neck squamous cell cancer cases was used as the discovery set to identify optimal association of TIL variables and survival. Two independent cohorts of 234 cases were used for validation. RESULTS: We found that electronic TIL variables were associated with favorable prognosis in both the HPV-positive and -negative cases. After adjusting for clinicopathologic factors, Cox regression analysis demonstrated that electronic total TILs% (p = 0.025) in the HPV-positive and electronic stromal TILs% (p < 0.001) in the HPV-negative population were independent markers of disease specific outcomes (disease free survival). CONCLUSIONS: Neural network TIL variables demonstrated independent prognostic value in validation cohorts of HPV-positive and HPV-negative head and neck cancers. These objective variables can be calculated by an open-source software and could be considered for testing in a prospective setting to assess potential clinical implications.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço , Linfócitos do Interstício Tumoral , Humanos , Linfócitos do Interstício Tumoral/patologia , Neoplasias de Cabeça e Pescoço/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Idoso
14.
Cancer Diagn Progn ; 4(3): 231-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707718

RESUMO

Background/Aim: Ewing sarcoma is an aggressive mesenchymal malignancy commonly affecting children and young adolescents. The molecular basis of this neoplasia is well reported with the formation of the EWSR1/FLI1 fusion gene being the most common genetic finding. However, this fusion gene has not been targeted therapeutically nor is being used as a prognostic marker. Its relevance regarding the molecular steps leading to Ewing sarcoma genesis are yet to be defined. The generation of the oncogenic EWSR1/FLI1 fusion gene, can be attributed to the simultaneous introduction of two DNA double-strand breaks (DSBs). The scope of this study is to detect any association between DNA repair deficiency and the clinicopathological aspects of Ewing's sarcoma disease. Patients and Methods: We have conducted an expression analysis of 35 patients diagnosed with Ewing sarcoma concerning the genes involved in non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways. We have analyzed the expression levels of 6 genes involved in NHEJ (XRCC4, XRCC5, XRCC6, POLλ, POLµ) and 9 genes involved in HR (RAD51, RAD52, RAD54, BRCA1, BRCA2, FANCC, FANCD, DNTM1, BRIT1) using real time PCR. Age, sex, location of primary tumor, tumor size, KI67, mitotic count, invasion of adjacent tissues and treatment were the clinicopathological parameters included in the statistical analysis. Results: Our results show that both these DNA repair pathways are deregulated in Ewing sarcoma. In addition, low expression of the xrcc4 gene has been associated with better overall survival probability (p=0.032). Conclusion: Our results, even though retrospective and in a small number of patients, highlight the importance of DSBs repair and propose a potential therapeutic target for this type of sarcoma.

15.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586773

RESUMO

BACKGROUND: The tumor microenvironment (TME) contributes to cancer progression and treatment response to therapy, including in renal cell carcinoma (RCC). Prior profiling studies, including single-cell transcriptomics, often involve limited sample sizes and lack spatial orientation. The TME of RCC brain metastases, a major cause of morbidity, also remains largely uncharacterized. METHODS: We performed digital spatial profiling on the NanoString GeoMx platform using 52 validated immuno-oncology markers on RCC tissue microarrays representing progressive stages of RCC, including brain metastases. We profiled 76 primary tumors, 27 adjacent histologically normal kidney samples, and 86 metastases, including 24 brain metastases. RESULTS: We observed lower immune checkpoint (TIM-3 and CTLA-4), cytolytic (GZMA and GZMB), and T cell activation (CD25) protein expression in metastases compared with primary tumors in two separate cohorts. We also identified changes in macrophages in metastases, with brain metastases-susceptible patients showing less M1-like, inflammatory macrophage markers (HLA-DR and CD127) in metastatic samples. A comparison of brain metastases to extracranial metastases revealed higher expression of the anti-apoptotic, BCL-2-family protein BCL-XL and lower expression of the innate immune activator STING in brain metastases. Lower TIM-3 and CD40 in the TME of brain metastases appear to be associated with longer survival, a finding that requires further validation. CONCLUSIONS: Compared with primary tumors, RCC metastases, including brain metastases, express lower levels of numerous markers of immune activation and current or investigational therapeutic targets. Our findings may have important implications for designing future biomarker and treatment studies and may aid in development of brain metastases-specific therapies.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Doenças do Sistema Imunitário , Neoplasias Renais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Oncologia , Microambiente Tumoral
16.
Cancer Res Commun ; 3(4): 558-563, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37057033

RESUMO

Programmed cell death protein-1 (PD-1)-targeted immunotherapy is approved for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) treatment. Although its efficacy correlates with PD-L1 expression, response is limited even among positive cases. We employed digital spatial profiling (DSP) to discover potential biomarkers of immunotherapy outcomes in HNSCC. Fifty prospectively collected, pretreatment biopsy samples from patients with anti-PD-1-treated R/M HNSCC, were assessed using DSP, for 71 proteins in four molecularly defined compartments (tumor, leukocyte, macrophage, and stroma). Markers were evaluated for associations with progression-free (PFS) and overall survival (OS). High beta-2 microglobulin (B2M), LAG-3, CD25, and 4-1BB in tumor; high B2M, CD45, CD4 in stroma, and low fibronectin in the macrophage compartment, correlated with prolonged PFS. Improved PFS and OS were observed for cases with high B2M by quantitative and mRNA. Findings were validated in an independent cohort for PFS (HR, 0.41; 95% confidence interval, 0.19-0.93; P = 0.034). B2M-high tumors showed enrichment with immune cell and immune checkpoint markers. Our study illustrates B2M expression is associated with improved survival for immune checkpoint inhibitor (ICI)-treated HNSCC. Significance: In the current study, DSP revealed the positive association of B2M expression in the tumor compartment with immunotherapy outcomes in R/M HNSCC.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Checkpoint Imunológico , Recidiva Local de Neoplasia/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
17.
Oncoimmunology ; 12(1): 2260618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781235

RESUMO

Although immune checkpoint inhibitor (ICI) therapy has dramatically improved outcome for metastatic melanoma patients, many patients do not benefit. Since adverse events may be severe, biomarkers for resistance would be valuable, especially in the adjuvant setting. We performed high-plex digital spatial profiling (DSP) using the NanoString GeoMx® on 53 pre-treatment specimens from ICI-treated metastatic melanoma cases. We interrogated 77 targets simultaneously in four molecular compartments defined by S100B for tumor, CD68 for macrophages, CD45 for leukocytes, and nonimmune stromal cells defined as regions negative for all three compartment markers but positive for SYTO 13. For DSP validation, we confirmed the results obtained for some immune markers, such as CD8, CD4, CD20, CD68, CD45, and PD-L1, by quantitative immunofluorescence (QIF). In the univariable analysis, 38 variables were associated with outcome, 14 of which remained significant after multivariable adjustment. Among them, CD95 was further validated using multiplex immunofluorescence in the Discovery immunotherapy (ITX) Cohort and an independent validation cohort with similar characteristics, showing an association between high levels of CD95 and shorter progression-free survival. We found that CD95 in stroma was associated with resistance to ICI. With further validation, this biomarker could have value to select patients that will not benefit from immunotherapy.


Assuntos
Imunoterapia , Melanoma , Receptor fas , Humanos , Imunoterapia/métodos , Melanoma/terapia , Intervalo Livre de Progressão , Receptor fas/genética
18.
Oral Oncol ; 139: 106358, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871349

RESUMO

OBJECTIVES: The aim of this pilot study was to evaluate the presence of somatic mutations in matched tumor and circulating DNA (ctDNA) samples from patients with primary head and neck squamous cell carcinoma (HNSCC) and assess the association of changes in ctDNA levels with survival. MATERIALS AND METHODS: Our study included 62 patients with stage I-IVB HNSCC treated with surgery or radical chemoradiotherapy with curative intent. Plasma samples were obtained at baseline, at the end of treatment (EOT), and at disease progression. Tumor DNA was extracted from plasma (ctDNA) and tumor tissue (tDNA). The Safe Sequencing System was used assess the presence of pathogenic variants in four genes (TP53, CDKN2A, HRAS and PI3KCA) in both ctDNA and tDNA. RESULTS: Forty-five patients had available tissue and plasma samples. Concordance of genotyping results between tDNA and ctDNA at baseline was 53.3%. TP53 mutations were most commonly identified at baseline in both ctDNA (32.6%) and tDNA (40%). The presence of mutations in this restricted set of 4 genes in tissue samples at baseline was associated with decreased overall survival (OS) [median 58.3 months for patients with mutations vs. 89 months for patients without mutations, p < 0.013]. Similarly, patients presenting with mutations in ctDNA had shorter OS [median 53.8 vs. 78.6 months, p < 0.037]. CtDNA clearance at EOT did not show any association with PFS or OS. CONCLUSIONS: Liquid biopsy enables real-time molecular characterization of HNSCC and might predict survival. Larger studies are needed to validate the utility of ctDNA as a biomarker in HNSCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , DNA Tumoral Circulante/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Pulmonares/genética , Projetos Piloto , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Biomarcadores Tumorais/genética
19.
Cancer Res Commun ; 3(8): 1514-1523, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37575280

RESUMO

Purpose: We conducted a phase II randomized noncomparative window of opportunity (WOO) trial to evaluate the inhibition of cellular proliferation and the modulation of immune microenvironment after treatment with olaparib alone or in combination with cisplatin or durvalumab in patients with operable head and neck squamous cell carcinoma (HNSCC). Experimental Design: Forty-one patients with HNSCC were randomized to cisplatin plus olaparib (arm A), olaparib alone (arm B), no treatment (arm C) or durvalumab plus olaparib (arm D). The primary endpoint was to evaluate the percentage of patients in each arm that achieved a reduction of at least 25% in Ki67. Secondary endpoints included objective response rate (ORR), safety, and pathologic complete response (pCR) rate. Paired baseline and resection tumor biopsies and blood samples were evaluated for prespecified biomarkers. Results: A decrease in Ki67 of at least 25% was observed in 44.8% of treated patients, as measured by quantitative immunofluorescence. The ORR among treated patients was 12.1%. pCR was observed in 2 patients. Two serious adverse events occurred in 2 patients.Programmed death ligand 1 (PD-L1) levels [combined positive score (CPS)] were significantly higher after treatment in arms A and D. Expression of CD163 and colony-stimulating factor 1 receptor (CSF1R) genes, markers of M2 macrophages, increased significantly posttreatment whereas the expression of CD80, a marker of M1 macrophages, decreased. Conclusion: Preoperative olaparib with cisplatin or alone or with durvalumab was safe in the preoperative setting and led to decrease in Ki67 of at least 25% in 44.8% of treated patients. Olaparib-based treatment modulates the tumor microenvironment leading to upregulation of PD-L1 and induction of protumor features of macrophages. Significance: HNSCC is characterized by defective DNA repair pathways and immunosuppressive tumor microenvironment. PARP inhibitors, which promote DNA damage and "reset" the inflammatory tumor microenvironment, can establish an effective antitumor response. This phase II WOO trial in HNSCC demonstrated the immunomodulatory effects of PARP inhibitor-induced DNA damage. In this chemo-naïve population, PARP inhibitor-based treatment, reduced tumor cell proliferation and modulated tumor microenvironment. After olaparib upregulation of PD-L1 and macrophages, suggests that combinatorial treatment might be beneficial. Synopsis: Our WOO study demonstrates that preoperative olaparib results in a reduction in Ki67, upregulation of PD-L1 CPS, and induction of protumor features of macrophages in HNSCC.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Cisplatino/efeitos adversos , Antígeno B7-H1 , Inibidores de Poli(ADP-Ribose) Polimerases , Antígeno Ki-67 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral
20.
J Thorac Oncol ; 17(8): 991-1001, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490853

RESUMO

INTRODUCTION: Despite the clinical efficacy of immune checkpoint inhibitors (ICIs) in NSCLC, only approximately 20% of patients remain disease-free at 5 years. Here, we use digital spatial profiling to find candidate biomarker proteins associated with ICI resistance. METHODS: Pretreatment samples from 56 patients with NSCLC treated with ICI were analyzed using the NanoString GeoMx digital spatial profiling method. A panel of 71 photocleavable oligonucleotide-labeled primary antibodies was used for protein detection in four molecular compartments (tumor, leukocytes, macrophages, and immune stroma). Promising candidates were orthogonally validated with quantitative immunofluorescence. Available pretreatment samples from 39 additional patients with NSCLC who received ICI and 236 non-ICI-treated patients with operable NSCLC were analyzed to provide independent cohort validation. RESULTS: Biomarker discovery using the protein-based molecular compartmentalization strategy allows 284 protein variables to be assessed for association with ICI resistance by univariate analysis using continuous log-scaled data. Of the 71 candidate protein biomarkers, CD66b in the CD45+CD68 molecular compartment (immune stroma) predicted significantly shorter overall survival (OS) (hazard ratio [HR] 1.31, p = 0.016) and was chosen for validation. Orthogonal validation by quantitative immunofluorescence illustrated that CD66b was associated with resistance to ICI therapy but not prognostic for poor outcomes in untreated NSCLC (discovery cohort [OS HR 2.49, p = 0.026], validation cohort [OS HR 2.05, p = 0.046], non-ICI-treated cohort [OS HR 1.67, p = 0.06]). CONCLUSIONS: Using the technique, we have discovered that CD66b expression is indicative of resistance to ICI therapy in NSCLC. Given that CD66b identifies neutrophils, further studies are warranted to characterize the role of neutrophils in ICI resistance.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA