Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(9): e18263, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685671

RESUMO

In the quest for effective lung cancer treatments, the potential of 3,6-diaminoacridine-9-carbonitrile (DAC) has emerged as a game changer. While DAC's efficacy against glioblastoma is well documented, its role in combating lung cancer has remained largely untapped. This study focuses on CTX-1, exploring its interaction with the pivotal EGFR-TKD protein, a crucial target in lung cancer therapeutics. A meticulous molecular docking analysis revealed that CTX-1 exhibits a noteworthy binding affinity of -7.9 kcal/mol, challenging Erlotinib, a conventional lung cancer medication, which displayed a binding affinity of -7.3 kcal/mol. For a deeper understanding of CTX-1's molecular mechanics, this study employed rigorous 100-ns molecular dynamics simulations, demonstrating CTX-1's remarkable stability in comparison with erlotinib. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method further corroborated these results, with CTX-1 showing a free binding energy of -105.976 ± 1.916 kJ/mol. The true prowess of CTX-1 was tested against diverse lung cancer cell lines, including A549, Hop-62 and H-1299. CTX-1 not only significantly outperformed erlotinib in anticancer activity but also exhibited a spectrum of therapeutic effects. It effectively diminished cancer cell viability, induced DNA damage, halted cell cycle progression, generated reactive oxygen species (ROS), impaired mitochondrial transmembrane potential, instigated apoptosis and successfully inhibited EGFR-TKD. This study not only underscores the potential of CTX-1 a formidable contender in lung cancer treatment but also marks a paradigm shift in oncological therapeutics, offering new horizons in the fight against this formidable disease.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Ligação Proteica , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos
2.
J Cell Mol Med ; 28(7): e18150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494866

RESUMO

The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.


Assuntos
Neoplasias Colorretais , Fenóis , Humanos , Survivina , Simulação de Acoplamento Molecular , Proliferação de Células
3.
J Med Virol ; 96(4): e29596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590017

RESUMO

Exosomes play a crucial role in intercellular communication and have emerged as significant vehicles for transporting disease-specific biomarkers. This feature provides profound insights into the progression of diseases and the responses of patients to treatments. For example, in leukemia, exosomes convey critical information through the carriage of specific proteins and nucleic acids. In the case of human papillomavirus (HPV)-mediated cervical cancer, exosomes are particularly useful for noninvasive detection as they transport high-risk HPV DNA and specific biomolecules, which can be indicators of the disease. Despite their vast potential, there are several challenges associated with the use of exosomes in medical diagnostics. These include their inherent heterogeneity, the need for enhanced sensitivity in detection methods, the establishment of standardization protocols, and the requirement for cost-effective scalability in their application. Addressing these challenges is crucial for the effective implementation of exosome-based diagnostics. Future research and development are geared towards overcoming these obstacles. Efforts are concentrated on refining the processes of biomarker discovery, establishing comprehensive regulatory frameworks, developing convenient point-of-care devices, exploring methods for multimodal detection, and conducting extensive clinical trials. The ultimate goal of these efforts is to inaugurate a new era of precision diagnostics within healthcare. This would significantly improve patient outcomes and reduce the burden of diseases such as leukemia and HPV-mediated cervical cancer. The integration of exosomes with cutting-edge technology holds the promise of significantly reinforcing the foundations of healthcare, leading to enhanced diagnostic accuracy, better disease monitoring, and more personalized therapeutic approaches.


Assuntos
Exossomos , Leucemia , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/tratamento farmacológico , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico
4.
J Cell Mol Med ; 27(20): 3168-3188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37724615

RESUMO

The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.

5.
J Med Virol ; 95(10): e29135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792364

RESUMO

Personalized cancer immunotherapies, combined with nanotechnology (nano-vaccines), are revolutionizing cancer treatment strategies, explicitly targeting Human papilloma virus (HPV)-related cancers. Despite the availability of preventive vaccines, HPV-related cancers remain a global concern. Personalized cancer nano-vaccines, tailored to an individual's tumor genetic mutations, offer a unique and promising solution. Nanotechnology plays a critical role in these vaccines by efficiently delivering tumor-specific antigens, enhancing immune responses, and paving the way for precise and targeted therapies. Recent advancements in preclinical models have demonstrated the potential of polymeric nanoparticles and high-density lipoprotein-mimicking nano-discs in augmenting the efficacy of personalized cancer vaccines. However, challenges related to optimizing the nano-carrier system and ensuring safety in human trials persist. Excitingly, the integration of nanotechnology with Proteolysis-Targeting Chimeras (PROTACs) provides an additional avenue to enhance the effectiveness of personalized cancer treatment. PROTACs selectively degrade disease-causing proteins, amplifying the impact of nanotechnology-based therapies. Overcoming these challenges and leveraging the synergistic potential of nanotechnology, PROTACs, and Proteolysis-Targeting Antibodies hold great promise in pursuing novel and effective therapeutic solutions for individuals affected by HPV-related cancers.


Assuntos
Vacinas Anticâncer , Neoplasias , Infecções por Papillomavirus , Humanos , Quimera de Direcionamento de Proteólise , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Proteólise , Neoplasias/terapia
6.
Biomarkers ; 28(2): 139-151, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36503350

RESUMO

Cancer stem cells (CSCs) are self-renewing and slow-multiplying micro subpopulations in tumour microenvironments. CSCs contribute to cancer's resistance to radiation (including radiation) and other treatments. CSCs control the heterogeneity of the tumour. It alters the tumour's microenvironment cellular singling and promotes epithelial-to-mesenchymal transition (EMT). Current research decodes the role of extracellular vesicles (EVs) and CSCs interlink in radiation resistance. Exosome is a subpopulation of EVs and originated from plasma membrane. It is secreted by several active cells. It involed in cellular communication and messenger of healthly and multiple pathological complications. Exosomal biological active cargos (DNA, RNA, protein, lipid and glycan), are capable to transform recipient cells' nature. The molecular signatures of CSCs and CSC-derived exosomes are potential source of cancer theranostics development. This review discusse cancer stem cells, radiation-mediated CSCs development, EMT associated with CSCs, the role of exosomes in radioresistance development, the current state of radiation therapy and the use of CSCs and CSCs-derived exosomes biomolecules as a clinical screening biomarker for cancer. This review gives new researchers a reason to keep an eye on the next phase of scientific research into cancer theranostics that will help mankind.


Assuntos
Exossomos , Neoplasias , Humanos , Relevância Clínica , Neoplasias/radioterapia , Neoplasias/patologia , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
7.
Biomarkers ; 28(6): 502-518, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352015

RESUMO

Breast cancer (BC) remains the most challenging global health crisis of the current decade, impacting a large population of females annually. In the field of cancer research, the discovery of extracellular vesicles (EVs), specifically exosomes (a subpopulation of EVs), has marked a significant milestone. In general, exosomes are released from all active cells but tumour cell-derived exosomes (TDXs) have a great impact (TDXs miRNAs, proteins, lipid molecules) on cancer development and progression. TDXs regulate multiple events in breast cancer such as tumour microenvironment remodelling, immune cell suppression, angiogenesis, metastasis (EMT-epithelial mesenchymal transition, organ-specific metastasis), and therapeutic resistance. In BC, early detection is the most challenging event, exosome-based BC screening solved the problem. Exosome-based BC treatment is a sign of the transforming era of liquid biopsy, it is also a promising therapeutic tool for breast cancer. Exosome research goes to closer precision oncology via a single exosome profiling approach. Our hope is that this review will serve as motivation for researchers to explore the field of exosomes and develop an efficient, and affordable theranostics approach for breast cancer.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Medicina de Precisão , Relevância Clínica , Exossomos/genética , Exossomos/patologia , Microambiente Tumoral/genética
8.
Appl Microbiol Biotechnol ; 107(2-3): 473-489, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481800

RESUMO

In vitro culture of a plant cell, tissue and organ is a marvellous, eco-friendly biotechnological strategy for the production of phytochemicals. With the emergence of recent biotechnological tools, genetic engineering is now widely practiced enhancing the quality and quantity of plant metabolites. Triterpenoid saponins especially asiaticoside and madecassoside of Centella asiatica (L.) Urb. are popularly known for their neuroprotective activity. It has become necessary to increase the production of asiaticoside and madecassoside because of their high pharmaceutical and industrial demand. Thus, the review aims to provide efficient biotechnological tools along with proper strategies. This review also included a comparative analysis of various carbon sources and biotic and abiotic elicitors. The vital roles of a variety of plant growth regulators and their combinations have also been evaluated at different in vitro growth stages of Centella asiatica. Selection of explants, direct and callus-mediated organogenesis, root organogenesis, somatic embryogenesis, synthetic seed production etc. are also highlighted in this study. In a nutshell, this review will present the research outcomes of different biotechnological interventions used to increase the yield of triterpenoid saponins in C. asiatica. KEY POINTS: • Critical and updated assessment on in vitro biotechnology in C. asiatica. • In vitro propagation of C. asiatica and elicitation of triterpenoid saponins production. • Methods for mass producing C. asiatica.


Assuntos
Centella , Saponinas , Triterpenos , Centella/genética , Centella/metabolismo , Triterpenos/metabolismo , Extratos Vegetais/metabolismo , Biotecnologia , Saponinas/metabolismo
9.
Metab Brain Dis ; 38(1): 61-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149588

RESUMO

Glioblastoma (GB) are aggressive tumors that obstruct normal brain function. While the skull cannot expand in response to cancer growth, the growing pressure in the brain is generally the first sign. It can produce more frequent headaches, unexplained nausea or vomiting, blurred peripheral vision, double vision, a loss of feeling or movement in an arm or leg, and difficulty speaking and concentrating; all depend on the tumor's location. GB can also cause vascular thrombi, damaging endothelial cells and leading to red blood cell leakage. Latest studies have revealed the role of single nucleotide polymorphisms (SNPs) in developing and spreading cancers such as GB and breast cancer. Many discovered SNPs are associated with GB, particularly in great abundance in the promoter region, creating polygenetic vulnerability to glioma. This study aims to compile a list of some of the most frequent and significant SNPs implicated with GB formation and proliferation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Células Endoteliais/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/patologia
10.
Drug Dev Res ; 84(6): 1031-1036, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391892

RESUMO

Exosome-based targeted delivery of Proteolysis-Targeting Chimeras (PROTACs) is an innovative approach that provides a promising solution for addressing the complex issues of viral diseases. This strategy significantly mitigates the off-target effects associated with traditional therapeutics by facilitating targeted delivery of PROTACs, which in turn enhances the overall therapeutic outcomes. Challenges like poor pharmacokinetics and unintended side effects, commonly observed with conventional PROTACs usage, are effectively managed with this approach. Emerging evidence affirms the potential of this delivery mechanism in curbing viral replication. However, it is crucial to undertake more comprehensive investigations for optimizing exosome-based delivery systems and conducting stringent safety and efficacy assessments within preclinical and clinical settings. The advancements in this field could potentially redefine the therapeutic landscape for viral diseases, opening new vistas for their management and treatment.


Assuntos
Exossomos , Viroses , Humanos , Proteólise , Viroses/tratamento farmacológico
11.
J Cell Physiol ; 237(11): 4021-4036, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063496

RESUMO

Extracellular vehicles (EVs) are nanoscale lipid bilayer vesicles that carry biologically active biomolecule cargos like proteins, lipids, and nucleic acids (DNA, RNA) outside of the cell. Blood (serum/plasma), urine, and bronchoalveolar lavage fluid are all examples of biofluids from which they may be collected. EVs play a vital role in intracellular communication. The molecular signature of EVs largely depends on the parental cell's status. EVs are classified into two groups, (1) exosomes (originated by endogenous route) and (2) microvesicles (originated from the plasma membrane, also known as ectosomes). The quantity and types of EV cargo vary during normal conditions compared to pathological conditions (chronic inflammatory lung diseases or lung cancer). Consequently, EVs contain novel biomarkers that differ based on the cell type of origin and during lung diseases. Small RNAs (e.g., microRNAs) are transported by EVs, which is one of the most rapidly evolving research areas in the field of EVs biology. EV-mediated cargos transport small RNAs that can result in reprograming the target/recipient cells. Multiple chronic inflammatory lung illnesses, such as chronic obstructive pulmonary disease, asthma, pulmonary hypertension, pulmonary fibrosis, cystic fibrosis, acute lung injury, and lung cancer, have been demonstrated to be regulated by EV. In this review, we will consolidate the current knowledge and literature on the novel role of EVs and their small RNAs concerning chronic lung diseases (CLDs). Additionally, we will also provide better insight into the clinical and translational impact of mesenchymal stem cells-derived EVs as novel therapeutic agents in treating CLDs.


Assuntos
Exossomos , Vesículas Extracelulares , Pneumopatias , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Exossomos/genética , Exossomos/metabolismo , Pneumopatias/genética , Neoplasias Pulmonares/metabolismo
12.
Epidemiol Infect ; 150: e112, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35615920

RESUMO

India has the third-largest burden of human immunodeficiency virus (HIV) infection in the world. The coronavirus disease 2019 (COVID-19) pandemic has only exposed the cracks in the Indian healthcare infrastructure concerning HIV. The prevalence of HIV in India is more among the destitute or sections of society shrouded by years of social stigma such as prostitutes, truck drivers, transsexuals and intravenous drug users. National AIDS Control Organisation and The Joint United Nations Programme on HIV/AIDS (UNAIDS) organisation have many several efforts over the years to set up counselling and testing centres all over the country and spread awareness about HIV among the masses. COVID-19 pandemic has reversed years of progress made by the same. HIV patients are biologically more susceptible to COVID-19, and the lockdown has led to the loss of jobs, economic crises, shortage of drugs and necessities such as food and housing among this vulnerable population, which can result in lowered CD4-T cell counts in the coming months and make way for dangerous opportunistic infection outbreaks in this population increasing the overall HIV burden of India. This article explores how COVID-19 has impacted India's already existing HIV epidemic and tries to put forth recommendations based on the evidence found to be better prepared in treating the HIV-positive population in India in the face of another catastrophe like the COVID-19.


Assuntos
Síndrome da Imunodeficiência Adquirida , COVID-19 , Infecções por HIV , Síndrome da Imunodeficiência Adquirida/epidemiologia , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Atenção à Saúde , Infecções por HIV/epidemiologia , Humanos , Índia/epidemiologia , Pandemias
13.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335270

RESUMO

Antibiotic resistance is one of the major growing concerns for public health. Conventional antibiotics act on a few predefined targets and, with time, several bacteria have developed resistance against a large number of antibiotics. The WHO has suggested that antibiotic resistance is at a crisis stage and identification of new antibiotics and targets could be the only approach to bridge the gap. Filamentous Temperature Sensitive-Mutant Z (Fts-Z) is one of the promising and less explored antibiotic targets. It is a highly conserved protein and plays a key role in bacterial cell division by introducing a cytokinetic Z-ring formation. In the present article, the potential of over 165 cyanobacterial compounds with reported antibiotic activity against the catalytic core domain in the Fts-Z protein of the Bacillus subtilis was studied. The identified cyanobacterial compounds were screened using the GLIDE module of Maestro v-2019-2 followed by 100-ns molecular dynamics (MD) simulation. Ranking of the potential compound was performed using dock score and MMGBSA based free energy. The study reported that the docking score of aphanorphine (-6.010 Kcalmol-1) and alpha-dimorphecolic acid (ADMA) (-6.574 Kcalmol-1) showed significant role with respect to the reported potential inhibitor PC190723 (-4.135 Kcalmol-1). A 100 ns MD simulation infers that Fts-Z ADMA complex has a stable conformation throughout the progress of the simulation. Both the compounds, i.e., ADMA and Aphanorphine, were further considered for In-vitro validation by performing anti-bacterial studies against B. subtilis by agar well diffusion method. The results obtained through In-vitro studies confirm that ADMA, a small molecule of cyanobacterial origin, is a potential compound with an antibacterial activity that may act by inhibiting the novel target Fts-Z and could be a great drug candidate for antibiotic development.


Assuntos
Bacillus subtilis , Cianobactérias , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Mutantes/metabolismo
14.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956900

RESUMO

ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.


Assuntos
Inibidores de Proteínas Quinases , Relação Quantitativa Estrutura-Atividade , Quinase do Linfoma Anaplásico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrogênio , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
15.
Molecules ; 27(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296527

RESUMO

The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.


Assuntos
Tratamento Farmacológico da COVID-19 , Melatonina , Humanos , SARS-CoV-2 , Melatonina/farmacologia , Melatonina/uso terapêutico , Antioxidantes , Antivirais/farmacologia , Antivirais/uso terapêutico
16.
Saudi Pharm J ; 30(6): 693-710, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812153

RESUMO

The aldose reductase (AR) enzyme is an important target enzyme in the development of therapeutics against hyperglycaemia induced health complications such as retinopathy, etc. In the present study, a quantitative structure activity relationship (QSAR) evaluation of a dataset of 226 reported AR inhibitor (ARi) molecules is performed using a genetic algorithm - multi linear regression (GA-MLR) technique. Multi-criteria decision making (MCDM) analysis furnished two five variables based QSAR models with acceptably high performance reflected in various statistical parameters such as, R2 = 0.79-0.80, Q2 LOO = 0.78-0.79, Q2 LMO = 0.78-0.79. The QSAR model analysis revealed some of the molecular features that play crucial role in deciding inhibitory potency of the molecule against AR such as; hydrophobic Nitrogen within 2 Å of the center of mass of the molecule, non-ring Carbon separated by three and four bonds from hydrogen bond donor atoms, number of sp2 hybridized Oxygen separated by four bonds from sp2 hybridized Carbon atoms, etc. 14 in silico generated hits, using a compound 18 (a most potent ARi from present dataset with pIC50 = 8.04 M) as a template, on QSAR based virtual screening (QSAR-VS) furnished a scaffold 5 with better ARi activity (pIC50 = 8.05 M) than template compound 18. Furthermore, molecular docking of compound 18 (Docking Score = -7.91 kcal/mol) and scaffold 5 (Docking Score = -8.08 kcal/mol) against AR, divulged that they both occupy the specific pocket(s) in AR receptor binding sites through hydrogen bonding and hydrophobic interactions. Molecular dynamic simulation (MDS) and MMGBSA studies right back the docking results by revealing the fact that binding site residues interact with scaffold 5 and compound 18 to produce a stable complex similar to co-crystallized ligand's conformation. The QSAR analysis, molecular docking, and MDS results are all in agreement and complementary. QSAR-VS successfully identified a more potent novel ARi and can be used in the development of therapeutic agents to treat diabetes.

20.
Drug Discov Today ; : 104044, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796097

RESUMO

The increase in diseases caused by RNA viruses, such as influenza, severe acute respiratory syndrome-coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS), and Ebola, presents a growing global health challenge as well as the threat of zoonosis. Traditional antiviral treatments are often undermined by fast-mutating viruses, drug resistance, and newly emerging pathogens. Here, we explore proteolysis-targeting chimeras (PROTACs), a novel protein degradation machinery that has the potential to reshape the way in which RNA viral infections can be managed. PROTACs excel at specifically degrading pathogenic proteins, offering a targeted and efficient antiviral strategy. We also investigate the potential of exosome-based diagnostic technologies, which harness cell-derived nanovesicles for non-invasive sampling and early viral infection detection. Addressing the challenge of PROTAC delivery, we introduce a groundbreaking strategy utilizing exosomes to deliver PROTACs with improved precision and as a targeted delivery vehicle. Integrating these innovative strategies provides a novel approach to combat RNA zoonotic viral diseases, paving the way for a new era in antiviral therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA