Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 32(20): 2708-21, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24045232

RESUMO

Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5(+) stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality.


Assuntos
Células-Tronco Adultas/fisiologia , Proliferação de Células , Pâncreas/citologia , Receptores Acoplados a Proteínas G/fisiologia , Trombospondinas/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Camundongos Transgênicos , Modelos Biológicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/fisiologia , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Trombospondinas/genética , Trombospondinas/metabolismo
2.
Appl Environ Microbiol ; 83(20)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778888

RESUMO

In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies.IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially relevant organism can accelerate research aiming to understand industrially relevant traits of these bacteria and can facilitate engineering strategies to harness the natural biodiversity of the species in optimized starter strains.

3.
Curr Opin Biotechnol ; 56: 61-68, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317145

RESUMO

The ever-expanding genomic insight in natural diversity of lactic acid bacteria (LAB) has revived the industrial interest in traditional and natural genetic mobilization methodologies. Here, we review recent advances in horizontal gene transfer processes in LAB, including natural competence, conjugation, and phage transduction. In addition, we envision the possibilities for industrial strain improvement arising from the recent discoveries of molecular exchanges between bacteria through nanotubes and extracellular vesicles, as well as the constantly expanding genome editing possibilities using the CRISPR-Cas technology.


Assuntos
Edição de Genes/métodos , Lactobacillales/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Microbiologia de Alimentos , Transferência Genética Horizontal , Transdução Genética
4.
Bio Protoc ; 8(13): e2922, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34395748

RESUMO

Natural competence can be activated in Lactoccocus lactis subsp lactis and cremoris upon overexpression of ComX, a master regulator of bacterial competence. Herein, we demonstrate a method to activate bacterial competence by regulating the expression of the comX gene by using a nisin-inducible promoter in an L. lactis strain harboring either a chromosomal or plasmid-encoded copy of nisRK. Addition of moderate concentrations of the inducer nisin resulted in concomitant moderate levels of ComX, which led to an optimal transformation rate (1.0 x 10-6 transformants/total cell number/g plasmid DNA). Here, a detailed description of the optimized protocol for competence induction is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA