RESUMO
The semilunar heart valves regulate the blood flow from the ventricles to the major arteries through the opening and closing of the scallop shaped cusps. These cusps are composed of collagen fibers that act as the primary loading-bearing component. The load-dependent collagen fiber architecture has been previously examined in the existing literature; however, these studies relied on chemical clearing and tissue modifications to observe the underlying changes in response to mechanical loads. In the present study, we address this gap in knowledge by quantifying the collagen fiber orientations and alignments of the aortic and pulmonary cusps through a multi-scale, non-destructive experimental approach. This opto-mechanical approach, which combines polarized spatial frequency domain imaging and biaxial mechanical testing, provides a greater field of view (10-25mm) and faster imaging time (45-50s) than other traditional collagen imaging techniques. The birefringent response of the collagen fibers was fit with a von Mises distribution, while the biaxial mechanical testing data was implemented into a modified full structural model for further analysis. Our results showed that the semilunar heart valve cusps are more extensible in the tissue's radial direction than the circumferential direction under all the varied biaxial testing protocols, together with greater material anisotropy among the pulmonary valve cusps compared to the aortic valve cusps. The collagen fibers were shown to reorient towards the direction of the greatest applied loading and incrementally realign with the increased applied stress. The collagen fiber architecture within the aortic valve cusps were found to be more homogeneous than the pulmonary valve counterparts, reflecting the differences in the physiological environments experienced by these two semilunar heart valves. Further, the von Mises distribution fitting highlighted the presence and contribution of two distinct fiber families for each of the two semilunar heart valves. The results from this work would provide valuable insight into connecting tissue-level mechanics to the underlying collagen fiber architecture-an essential information for the future development of high-fidelity aortic/pulmonary valve computational models.
Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Valva Aórtica , Colágeno , Matriz Extracelular , Humanos , SuínosRESUMO
Collagen fibers are the primary load-bearing microstructural constituent of bodily soft tissues, and, when subjected to external loading, the collagen fibers reorient, uncrimp, and elongate. Specific to the atrioventricular heart valve leaflets, the collagen fiber kinematics form the basis of many constitutive models; however, some researchers claim that modeling the affine fiber kinematics (AFK) are sufficient for accurately predicting the macroscopic tissue deformations, while others state that modeling the non-affine kinematics (i.e., fiber uncrimping together with elastic elongation) is required. Experimental verification of the AFK theory has been previously performed for the mitral valve leaflets in the left-side heart; however, this same evaluation has yet to be performed for the morphologically distinct tricuspid valve (TV) leaflets in the right-side heart. In this work, we, for the first time, evaluated the AFK theory for the TV leaflets using an integrated biaxial testing-polarized spatial frequency domain imaging device to experimentally quantify the load-dependent collagen fiber reorientations for comparison to the AFK theory predictions. We found that the AFK theory generally underpredicted the fiber reorientations by 3.1°, on average, under the applied equibiaxial loading with greater disparity when the tissue was subjected to the applied non-equibiaxial loading. Furthermore, increased AFK errors were observed with increasing collagen fiber reorientations (Pearson coefficient r = -0.36, equibiaxial loading), suggesting the AFK theory is better suited for relatively smaller reorientations. Our findings suggest the AFK theory may require modification for more accurate predictions of the collagen fiber kinematics in the TV leaflets, which will be useful in refining modeling efforts for more accurate TV simulations.
Assuntos
Valva Mitral , Valva Tricúspide , Animais , Fenômenos Biomecânicos , Matriz Extracelular , Estresse Mecânico , Suínos , Valva Tricúspide/diagnóstico por imagemRESUMO
The leaflets of the atrioventricular heart valves (AHVs) regulate the one-directional flow of blood through a coordination of the extracellular matrix components, including the collagen fibers, elastin, and glycosaminoglycans. Dysfunction of the AHVs, such as those caused by unfavorable microstructural remodeling, lead to valvular heart diseases and improper blood flow, which can ultimately cause heart failure. In order to better understand the mechanics and remodeling of the AHV leaflets and how therapeutics can inadvertently cause adverse microstructural changes, a systematic characterization of the role of each constituent in the biomechanical properties is appropriate. Previous studies have quantified the contributions of the individual microstructural components to tissue-level behavior for the semilunar valve cusps, but not for the AHV leaflets. In this study, for the first time, we quantify the relationships between microstructure and mechanics of the AHV leaflet using a three-step experimental procedure: (i) biaxial tension and stress relaxation testing of control (untreated) porcine AHV anterior leaflet specimens; (ii) enzyme treatment to remove a portion of either the collagen or elastin constituent; and (iii) biaxial tensile and stress relaxation testing of the constituent-removed (treated) specimens. We have observed that the removal of â¼100% elastin resulted in a â¼10% decrease in the tissue extensibility with biaxial tension and a â¼10% increase in the overall stress reduction with stress relaxation. In contrast, removal of 46% of the collagen content insignificantly affected tissue extensibility with biaxial tension and significantly increased stress decay (10%) with stress relaxation. These findings provide an insight into the microstructure-mechanics relationship of the AHVs and will be beneficial for future developments and refinements of microstructurally informed constitutive models for the simulation of diseased and surgically intervened AHV function. STATEMENT OF SIGNIFICANCE: This study presents, for the first time, a thorough mechanical characterization of the atrioventricular heart valve leaflets before and after enzymatic removal of elastin and collagen. We found that the biaxial tensile properties of elastin-deficient tissues and collagen-deficient are stiffer. The fact of elastin supporting low-stress valve function and collagen as the main load-bearing component was evident in a decrease in the low-tension modulus for elastin-deficient tissues and in the high-tension modulus for collagen-deficient tissues. Our quantification and experimental technique could be useful in predicting the disease-related changes in heart valve mechanics. The information obtained from this work is valuable for refining the constitutive models that describe the essential microstructure-mechanics relationship.