RESUMO
The association of chronic inflammation with colorectal carcinoma (CRC) development is well known in ulcerative colitis (UC). However, the role of inflammatory changes in sporadic CRC pathogenesis is less widely appreciated. In this study, in the first step using RNA-seq, we identified gene-pathway-level changes in UC-associated CRC (UC CRC, n = 10) and used the changes as a proxy for inflammation in human colon to ask if there were associations of inflammatory pathway dysregulations in sporadic CRC pathogenesis (n = 8). We found down-regulations of several inflammation-related metabolic pathways (nitrogen metabolism, sulfur metabolism) and other pathways (bile secretion, fatty acid degradation) in sporadic CRC. Non-inflammation-related changes included up-regulation of the proteasome pathway. In the next step, from a larger number of paired samples from sporadic CRC patients (n = 71) from a geographically and ethnically different population and using a different platform (microarray), we asked if the inflammation-CRC association could be replicated. The associations were significant even after stratification by sex, tumor stage, grade, MSI status, and KRAS mutation status. Our findings have important implications to widen our understanding of inflammatory pathogenesis of sporadic CRC. Furthermore, targeting of several of these dysregulated pathways could provide the basis for improved therapies for CRC.
RESUMO
Exposure to inorganic arsenic (As) is recognized as risk factor for basal cell carcinoma (BCC). We have followed-up 7000 adults for 6 years who were exposed to As and had manifest As skin toxicity. Of them, 1.7% developed BCC (males = 2.2%, females = 1.3%). In this study, we compared transcriptome-wide RNA sequencing data from the very first 26 BCC cases and healthy skin tissue from independent 16 individuals. Genes in " cell carcinoma pathway", "Hedgehog signaling pathway", and "Notch signaling pathway" were overexpressed in BCC, confirming the findings from earlier studies in BCC in other populations known to be exposed to As. However, we found that the overexpression of these known pathways was less pronounced in patients with high As exposure (urinary As creatinine ratio (UACR) > 192 µg/gm creatinine) than patients with low UACR. We also found that high UACR was associated with impaired DNA replication pathway, cellular response to different DNA damage repair mechanisms, and immune response. Transcriptomic data were not strongly suggestive of great potential for immune checkpoint inhibitors; however, it suggested lower chance of platinum drug resistance in BCC patients with high UACR compared high platinum drug resistance potential in patients with lower UACR.