Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 39(1): 26-32, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32985054

RESUMO

The therapeutic effects of mesenchymal stromal cells (MSCs) in graft failure or poor graft function after allogenic hematopoietic stem cell transplantation (HSCT) are currently undergoing clinical evaluation. MSCs exert their functions, at least partially, through the secretion of extracellular vesicles (MSC-EVs). The available information on the biological potential of MSC-EVs to improve hematopoietic function, both in in vitro studies and in reported preclinical models, focusing on the possible mechanisms of these effects are summarized in the current review. The potential advantages of EVs over MSCs are also discussed, as well as the limitations and uncertainties in terms of isolation, characterization, mechanism of action in this setting, and industrial scalability that should be addressed for their potential clinical application.


Assuntos
Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais/metabolismo , Aloenxertos , Animais , Vesículas Extracelulares/metabolismo , Humanos
2.
Stem Cells ; 37(10): 1357-1368, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184411

RESUMO

Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC-EV. MSC-EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC-EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)-STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho-STAT5 were confirmed by WES Simple in CD34+ cells with MSC-EV. In addition, these cells displayed a higher colony-forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC-EV was significantly increased in the injected femurs. In summary, the incorporation of MSC-EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. Stem Cells 2019;37:1357-1368.


Assuntos
Antígenos CD34/metabolismo , Células da Medula Óssea/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Camundongos
3.
Nature ; 512(7512): 78-81, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25043017

RESUMO

Myeloproliferative neoplasms (MPNs) are diseases caused by mutations in the haematopoietic stem cell (HSC) compartment. Most MPN patients have a common acquired mutation of Janus kinase 2 (JAK2) gene in HSCs that renders this kinase constitutively active, leading to uncontrolled cell expansion. The bone marrow microenvironment might contribute to the clinical outcomes of this common event. We previously showed that bone marrow nestin(+) mesenchymal stem cells (MSCs) innervated by sympathetic nerve fibres regulate normal HSCs. Here we demonstrate that abrogation of this regulatory circuit is essential for MPN pathogenesis. Sympathetic nerve fibres, supporting Schwann cells and nestin(+) MSCs are consistently reduced in the bone marrow of MPN patients and mice expressing the human JAK2(V617F) mutation in HSCs. Unexpectedly, MSC reduction is not due to differentiation but is caused by bone marrow neural damage and Schwann cell death triggered by interleukin-1ß produced by mutant HSCs. In turn, in vivo depletion of nestin(+) cells or their production of CXCL12 expanded mutant HSC number and accelerated MPN progression. In contrast, administration of neuroprotective or sympathomimetic drugs prevented mutant HSC expansion. Treatment with ß3-adrenergic agonists that restored the sympathetic regulation of nestin(+) MSCs prevented the loss of these cells and blocked MPN progression by indirectly reducing the number of leukaemic stem cells. Our results demonstrate that mutant-HSC-driven niche damage critically contributes to disease manifestation in MPN and identify niche-forming MSCs and their neural regulation as promising therapeutic targets.


Assuntos
Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/patologia , Neoplasias/patologia , Fibras Nervosas/patologia , Nicho de Células-Tronco , Sistema Nervoso Simpático/patologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Progressão da Doença , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Janus Quinase 2/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fibras Nervosas/efeitos dos fármacos , Nestina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores Adrenérgicos beta 3/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/patologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia
4.
Br J Haematol ; 187(1): 93-104, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172513

RESUMO

Patients with low-risk myelodysplastic syndromes (MDS) usually develop iron overload. This leads to a high level of oxidative stress in the bone marrow (BM) and increases haematopoietic cell dysfunction. Our objective was to analyse whether chelation with deferasirox (DFX) alleviates the consequences of oxidative stress and improves BM cell functionality. We analysed 13 iron-overloaded MDS patients' samples before and 4-10 months after treatment with DFX. Using multiparametric flow cytometry analysis, we measured intracellular reactive oxygen species (ROS), DNA oxidation and double strand breaks. Haematopoietic differentiation capacity was analysed by colony-forming unit (CFU) assays. Compared to healthy donors, MDS showed a higher level of intracellular ROS and DNA oxidative damage in BM cells. DNA oxidative damage decreased following DFX treatment. Furthermore, the clonogenic assays carried out before treatment suggest an impaired haematopoietic differentiation. DFX seems to improve this capacity, as illustrated by a decreased cluster/CFU ratio, which reached values similar to controls. We conclude that BM cells from MDS are subject to higher oxidative stress conditions and show an impaired haematopoietic differentiation. These adverse features seem to be partially rectified after DFX treatment.


Assuntos
Dano ao DNA/efeitos dos fármacos , Deferasirox/uso terapêutico , Quelantes de Ferro/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Deferasirox/farmacologia , Humanos , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Estudos Prospectivos , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Adulto Jovem
5.
Biol Blood Marrow Transplant ; 24(3): 443-451, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155314

RESUMO

Bone marrow mesenchymal stromal cells (MSCs) are precursors of adipocytes and osteoblasts and key regulators of hematopoiesis. Irradiation is widely used in conditioning regimens. Although MSCs are radio-resistant, the effects of low-dose irradiation on their behavior have not been extensively explored. Our aim was to evaluate the effect of 2.5 Gy on MSCs. Cells from 25 healthy donors were either irradiated or not (the latter were used as controls). Cells were characterized following International Society for Cellular Therapy criteria, including in vitro differentiation assays. Apoptosis was evaluated by annexin V/7-amino-actinomycin staining. Gene expression profiling and reverse transcriptase (RT)-PCR of relevant genes was also performed. Finally, long-term bone marrow cultures were performed to test the hematopoietic-supporting ability. Our results showed that immunophenotypic characterization and viability of irradiated cells was comparable with that of control cells. Gene expression profiling showed 50 genes differentially expressed. By RT-PCR, SDF-1 and ANGPT were overexpressed, whereas COL1A1 was downregulated in irradiated cells (P = .015, P = .007, and P = .031, respectively). Interestingly, differentiation of irradiated cells was skewed toward osteogenesis, whereas adipogenesis was impaired. Higher expression of genes involved in osteogenesis as SPP1 (P = .039) and lower of genes involved in adipogenesis, CEBPA and PPARG (P = .003 and P = .019), together with an increase in the mineralization capacity (Alizarin Red) was observed in irradiated cells. After differentiation, adipocyte counts were decreased in irradiated cells at days 7, 14, and 21 (P = .018 P = .046, and P = .018, respectively). Also, colony-forming unit granulocyte macrophage number in long-term bone marrow cultures was significantly higher in irradiated cells after 4 and 5 weeks (P = .046 and P = .007). In summary, the irradiation of MSCs with 2.5 Gy improves their hematopoietic-supporting ability by increasing osteogenic differentiation and decreasing adipogenesis.


Assuntos
Adipogenia/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Raios gama , Hematopoese/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos da radiação , Adulto , Idoso , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade
6.
J Mater Sci Mater Med ; 28(8): 115, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28647792

RESUMO

Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p < 0.05). Immunofluorescence against a human mitochondrial antibody three months post-implantation showed that the hMSCs were integrated into the de novo formed tissue, thus suggesting their ability to overcome the interspecies barrier. Hence, we conclude that the use of xenogeneic MSCs embedded in an ELR-based hydrogel leads to the successful regeneration of hyaline cartilage in osteochondral lesions.


Assuntos
Materiais Biocompatíveis/química , Elastina/química , Cartilagem Hialina/crescimento & desenvolvimento , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Regeneração , Animais , Fenômenos Biomecânicos , Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Cartilagem Articular/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Coelhos , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Tomografia Computadorizada por Raios X , Transplante Heterólogo
7.
Cell Commun Signal ; 14: 2, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754424

RESUMO

BACKGROUND: Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer. METHODS: Human MSC from bone marrow of healthy donors, mesenchymal cell lines (HS-5 and hTERT) and a leukemic cell line (K562 cells) were used to obtain EV for FCM characterization. EV released from the different cell lines were isolated by ultracentrifugation and were characterized, using a multi-parametric analysis, in a conventional flow cytometer. EV characterization by transmission electron microscopy (TEM), western blot (WB) and Nano-particle tracking analysis (NTA) was also performed. RESULTS: EV membranes are constituted by the combination of specific cell surface molecules depending on their cell of origin, together with specific proteins like tetraspanins (e.g. CD63). We have characterized by FCM the EV released from BM-hMSC, that were defined as particles less than 0.9 µm, positive for the hMSC markers (CD90, CD44 and CD73) and negative for CD34 and CD45 (hematopoietic markers). In addition, hMSC-derived EV were also positive for CD63 and CD81, the two characteristic markers of EV. To validate our characterization strategy, EV from mesenchymal cell lines (hTERT/HS-5) were also studied, using the leukemia cell line (K562) as a negative control. EV released from mesenchymal cell lines displayed the same immunophenotypic profile as the EV from primary BM-hMSC, while the EV derived from K562 cells did not show hMSC markers. We further validated the panel using EV from hMSC transduced with GFP. Finally, EV derived from the different sources (hMSC, hTERT/HS-5 and K562) were also characterized by WB, TEM and NTA, demonstrating the expression by WB of the exosomal markers CD63 and CD81, as well as CD73 in those from MSC origin. EV morphology and size/concentration was confirmed by TEM and NTA, respectively. CONCLUSION: We described a strategy that allows the identification and characterization by flow cytometry of hMSC-derived EV that can be routinely used in most laboratories with a standard flow cytometry facility.


Assuntos
5'-Nucleotidase/análise , Vesículas Extracelulares/química , Citometria de Fluxo/métodos , Receptores de Hialuronatos/análise , Células-Tronco Mesenquimais/citologia , Antígenos Thy-1/análise , Adulto , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/química , Pessoa de Meia-Idade , Adulto Jovem
8.
Eur J Haematol ; 97(6): 528-537, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27118602

RESUMO

INTRODUCTION: The ability of mesenchymal stromal cells (MSC) to suppress T-cell function has prompted their therapeutic use for graft-versus-host disease (GVHD) control. However, as MSC also modulate the activity of NK cells, which play an important role in graft-versus-leukemia (GVL) reaction, their administration could hamper this beneficial effect of allogeneic hematopoietic stem cell transplantation. MSC can be expanded from several sources, especially bone marrow and fat, but it is not well established if the cell source makes a difference in their immunoregulatory capacity. OBJECTIVE: The aim of this study was to compare the immunomodulatory effect of MSC derived from bone marrow (BM-CSM) or adipose tissue (AT-MSC) on NK cells, to determine whether the use of MSC from one or the other origin could be more favorable to preserve NK cell activity and, therefore, GVL. METHODS: Human NK cells were stimulated with IL-15 in the presence of BM-MSC or AT-MSC. The effect of both MSC populations on NK cell proliferation, cell cycle progression, and CD56 expression was analyzed by flow cytometry. Cytokine secretion was measured by ELISA, and cytotoxic activity was assessed by calcein release assays. RESULTS: Although both BM-MSC and AT-MSC induced a similar inhibition of NK cell proliferation, only BM-MSC decreased significantly NK cell cytotoxic activity and showed a trend for a higher reduction of IFN-γ secretion. CONCLUSION: These results suggest that, in the context of GVHD inhibition, the use of AT-MSC rather than BM-MSC could further preserve NK cell activity and, thus, favor GVL.


Assuntos
Tecido Adiposo/citologia , Comunicação Celular/imunologia , Imunomodulação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adulto , Idoso , Biomarcadores , Ciclo Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Humanos , Imunofenotipagem , Ativação Linfocitária , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Fenótipo
9.
Cytotherapy ; 15(6): 673-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23522868

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are multipotent stem cells with immunosuppressive properties. Nevertheless, it has been previously reported that MSCs might also trigger the immune response. We studied whether MSCs may act as carriers, capturing antigens that can be endocytosed by antigen-presenting cells later on. METHODS: We measured the cellular uptake of mannose receptor-mediated fluid phase macropinocytosis, assessed as cellular uptake of fluorescein isothiocyanate-dextran, and PKH-67-labeled cell lysates as a surrogate marker for antigen capture among dendritic cells (DCs, positive control), T lymphocytes (negative control) and MSCs. RESULTS: All experiments confirmed that MCSs displayed pinocytic and endocytic capacities, which were lower than those observed for DCs but significantly higher than those observed for T cells. We also demonstrated that MSCs release previously endocytosed antigens, which subsequently can be captured by DCs. CONCLUSIONS: MSCs have the ability to capture and release antigens.


Assuntos
Endocitose , Antígenos HLA-D/metabolismo , Células-Tronco Mesenquimais/citologia , Pinocitose , Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos HLA-D/imunologia , Humanos , Imunossupressores , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Clin Transl Med ; 13(1): e1163, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36588089

RESUMO

BACKGROUND: Despite notable advances in the support and treatment of patients admitted to the intensive care unit (ICU), the management of those who develop a systemic inflammatory response syndrome (SIRS) still constitutes an unmet medical need. MAIN BODY: Both the initial injury (trauma, pancreatitis, infections) and the derived uncontrolled response promote a hyperinflammatory status that leads to systemic hypotension, tissue hypoperfusion and multiple organ failure. Mesenchymal stromal/stem cells (MSCs) are emerging as a potential therapy for severe ICU patients due to their potent immunomodulatory, anti-inflammatory, regenerative and systemic homeostasis-regulating properties. MSCs have demonstrated clinical benefits in several inflammatory-based diseases, but their role in SIRS needs to be further explored. CONCLUSION: In the current review, after briefly overviewing SIRS physiopathology, we explore the potential mechanisms why MSC therapy could aid in the recovery of this condition and the pre-clinical and early clinical evidence generated to date.


Assuntos
Células-Tronco Mesenquimais , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Imunidade , Unidades de Terapia Intensiva , Síndrome de Resposta Inflamatória Sistêmica/terapia
11.
Nutrients ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37960235

RESUMO

Graft-versus-host disease (GvHD) is a common and severe complication following allogeneic hematopoietic stem cell transplantation (HSCT). Its prevention and treatment is a major challenge. Ferulic acid (FA) has anti-inflammatory and antioxidant properties that could be attractive in this setting. Our aim was to evaluate a bioactive ingredient derived from wheat bran (WB), selected for its high concentration of FA, in a murine model of GvHD. The ingredient was obtained via a bioprocess involving hydrolysis and spray-drying. GvHD was induced via HSCT between MHC-mismatched mouse strains. FA treatment was administered orally. Survival and disease scores (weight loss, hunching, activity, fur texture, and skin integrity, each scored between 0 and 2 depending on disease severity) were recorded daily, histological evaluation was performed at the end of the experiment, and serum inflammatory cytokines were analyzed on days 9 and 28. Treatment with FA did not protect GvHD mice from death, nor did it diminish GvHD scores. However, histological analysis showed that ulcers with large areas of inflammatory cells, vessels, and keratin were less common in skin samples from FA-treated mice. Areas of intense inflammatory response were also seen in fewer small intestine samples from treated mice. In addition, a slight decrease in INF-γ and TNF-α expression was observed in the serum of treated mice on day 28. The results showed some local effect of the ingredient intervention, but that the dose used may not be sufficient to control or reduce the inflammatory response at the systemic level in mice with GvHD. Higher dosages of FA may have an impact when evaluating the immunomodulatory capabilities of the hydrolyzed WB ingredient. Thus, further experiments and the use of technological strategies that enrich the ingredients in soluble ferulic acid to improve its efficacy in this setting are warranted.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Fibras na Dieta/farmacologia , Fibras na Dieta/uso terapêutico , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Suplementos Nutricionais
12.
Elife ; 122023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629404

RESUMO

Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize an enriched population of human HSPCs obtained from young and elderly healthy individuals.Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain aging-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks (GRNs) and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and GRNs regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2, and RUNX1 suggesting a role of these transcription factors (TFs) in the pathogenesis of the disease.In summary, we demonstrate that the combination of single-cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.


Our blood contains many different types of cells; red blood cells carry oxygen through the body, platelets help to stop bleeding and a variety of white blood cells fight infections. All of these critical components come from a pool of immature cells in bone marrow, which can develop and specialise into any of these. However, as we get older, these immature cells can accumulate damage, including mutations in specific genes. This increases the risk of diseases such as myelodysplastic syndromes (MDS), a type of cancer in which the cells cannot develop and the patient does not have enough healthy mature blood cells. The changes in gene activity in the immature cells have previously been studied using samples from young and elderly people, as well as individuals with MDS. These studies examined large numbers of cells together, revealing differences between young and elderly people, and individuals with MDS. However, this does not describe how the different types alter their behaviour. To address this, Ainciburu, Ezponda et al. used a technique called single-cell RNA sequencing to study the gene activity in individual immature blood cells. This revealed changes associated with maturation that may account for the different combinations of cell populations in younger and older people. The results confirmed findings from previous studies and suggested new genes involved in ageing or MDS. Ainciburu, Ezponda et al. used these results to create an analytical system that highlights gene activity differences in individual MDS patients that are independent of age-related changes. These results provide new insights that could help further research into the development of MDS and the ageing process. In addition, scientists could study other diseases using this approach of analysing individual patients' gene activity. In future, this could help to personalise clinical decisions on diagnosis and treatment.


Assuntos
Envelhecimento Saudável , Síndromes Mielodisplásicas , Neoplasias , Humanos , Idoso , Hematopoese , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/metabolismo , Neoplasias/patologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Homeodomínio/metabolismo
13.
Haematologica ; 97(8): 1218-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22371183

RESUMO

UNLABELLED: Background Recent findings suggest that a specific deletion of Dicer1 in mesenchymal stromal cell-derived osteoprogenitors triggers several features of myelodysplastic syndrome in a murine model. Our aim was to analyze DICER1 and DROSHA gene and protein expression in mesenchymal stromal cells (the osteoblastic progenitors) obtained from bone marrow of myelodysplastic syndrome patients, in addition to microRNA expression profile and other target genes such as SBDS, a DICER1-related gene that promotes bone marrow dysfunction and myelodysplasia when repressed in a murine model. DESIGN AND METHODS: Mesenchymal stromal cells from 33 bone marrow samples were evaluated. DICER, DROSHA and SBDS gene expression levels were assessed by real-time PCR and protein expression by Western blot. MicroRNA expresion profile was analyzed by commercial low-density arrays and some of these results were confirmed by individual real-time PCR. RESULTS: Mesenchymal stromal cells from myelodysplastic syndrome patients showed lower DICER1 (0.65±0.08 vs. 1.91±0.57; P=0.011) and DROSHA (0.62±0.06 vs. 1.38±0.29; P=0.009) gene expression levels, two relevant endonucleases associated to microRNA biogenesis, in comparison to normal myelodysplastic syndrome. These findings were confirmed at protein levels by Western blot. Strikingly, no differences were observed between paired mononuclear cells from myelodysplastic syndrome and controls. In addition, mesenchymal stromal cells from myelodysplastic syndrome patients showed significant lower SBDS (0.63±0.06 vs. 1.15±0.28; P=0.021) gene expression levels than mesenchymal stromal cells from healthy controls. Furthermore, mesenchymal stromal cells from myelodysplastic syndrome patients showed an underlying microRNA repression compared to healthy controls. Real-time PCR approach confirmed that mir-155, miR-181a and miR-222 were down-expressed in mesenchymal stromal cells from myelodysplastic syndrome patients. Conclusions This is the first description of an impaired microRNA biogenesis in human mesenchymal stromal cells from myelodysplastic syndrome patients, where DICER1 and DROSHA gene and protein downregulation correlated to a gene and microRNA abnormal expression profile, validating the animal model results previously described.


Assuntos
RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Síndromes Mielodisplásicas/genética , Proteínas/genética , Ribonuclease III/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/metabolismo
14.
Transfusion ; 52(5): 1086-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22023454

RESUMO

BACKGROUND: Posttransplant cytopenias are a severe complication after allogeneic stem cell transplantation (allo-SCT) and their origin is often multifactorial or unknown. They are frequently refractory to standard therapy, which may include steroids and/or immunoglobulins. Mesenchymal stem cells (MSCs) are an attractive therapeutic tool in the allo-SCT setting for the ability to enhance engraftment as well as acting as immunosuppressants for graft-versus-host disease. There is no prior experience in the literature of the use of MSCs to treat cytopenias after allo-SCT. CASE REPORTS: In this work we report for the first time four cases of refractory posttransplant cytopenias (three patients with thrombocytopenia and one with neutropenia) that were treated with MSCs from a third-party donor. MSCs were expanded from 100 mL of marrow obtained under standard good manufacturing practice conditions. Most patients received more than one cell dose, and median dose of MSCs administered was 1 × 10(6) /kg. RESULTS: All patients recovered normal blood counts, with a mean follow-up of 12.5 months. There were no adverse events related to MSC administration. CONCLUSION: MSC therapy may contribute to the recovery of refractory posttransplant peripheral cytopenias in patients undergoing allo-SCT.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neutropenia/cirurgia , Trombocitopenia/cirurgia , Adulto , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante Homólogo
15.
Front Bioeng Biotechnol ; 10: 918602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814011

RESUMO

Hindlimb ischemia is an unmet medical need, especially for those patients unable to undergo vascular surgery. Cellular therapy, mainly through mesenchymal stromal cell (MSC) administration, may be a potentially attractive approach in this setting. In the current work, we aimed to assess the potential of the combination of MSCs with a proangiogenic elastin-like recombinamer (ELR)-based hydrogel in a hindlimb ischemia murine model. Human bone marrow MSCs were isolated from four healthy donors, while ELR biomaterials were genetically engineered. Hindlimb ischemia was induced through ligation of the right femoral artery, and mice were intramuscularly injected with ELR biomaterial, 0.5 × 106 MSCs or the combination, and also compared to untreated animals. Tissue perfusion was monitored using laser Doppler perfusion imaging. Histological analysis of hindlimbs was performed after hematoxylin and eosin staining. Immunofluorescence with anti-human mitochondria antibody was used for human MSC detection, and the biomaterial was detected by elastin staining. To analyze the capillary density, immunostaining with an anti-CD31 antibody was performed. Our results show that the injection of MSCs significantly improves tissue reperfusion from day 7 (p = 0.0044) to day 21 (p = 0.0216), similar to the infusion of MSC + ELR (p = 0.0038, p = 0.0014), without significant differences between both groups. After histological evaluation, ELR hydrogels induced minimal inflammation in the injection sites, showing biocompatibility. MSCs persisted with the biomaterial after 21 days, both in vitro and in vivo. Finally, we observed a higher blood vessel density when mice were treated with MSCs compared to control (p<0.0001), but this effect was maximized and significantly different to the remaining experimental conditions when mice were treated with the combination of MSCs and the ELR biomaterial (p < 0.0001). In summary, the combination of an ELR-based hydrogel with MSCs may improve the angiogenic effects of both strategies on revascularization of ischemic tissues.

16.
Ther Adv Hematol ; 13: 20406207221142137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601635

RESUMO

Background: Eltrombopag (EP) is a small molecule that acts directly on hematopoietic stem cells (HSCs) and megakaryocytes to stimulate the hematopoietic process. Mesenchymal stem/stromal cells (MSCs) are key hematopoietic niche regulators. Objectives: We aimed to determine whether EP has any effect on MSC function and properties (especially on their hematopoietic-supporting ability) and if so, what changes (e.g. genome-wide transcriptomic alterations) are induced in MSC after EP treatment. Design/Methods: MSCs were isolated from 12 healthy donors and treated with 15 µM and 50 µM of EP for 24 h. The toxicity of the drug on MSCs and their differentiation ability were analyzed, as well as the transcriptomic profile, reactive oxygen species (ROS) and DNA damage and the changes induced in the clonogenic capacity of HSCs. Results: The results show that EP also modifies MSC functions, decreasing their adipogenic differentiation, increasing the expression of genes involved in hypoxia and other pathways related to oxygen homeostasis, and enhancing their ability to support hematopoiesis in vitro. Conclusion: Our findings support the use of EP in cases where hematopoiesis is defective, despite its well-known direct effects on hematopoietic cells. Our findings suggest that further studies on the effects of EP on MSCs from patients with aplastic anemia are warranted.

17.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494342

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Assuntos
Síndromes Mielodisplásicas , Fatores de Transcrição , Adulto , Humanos , Idoso , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Síndromes Mielodisplásicas/patologia , Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição CHOP/genética
18.
Haematologica ; 96(7): 1072-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21393326

RESUMO

This trial evaluated the feasibility and efficacy of the infusion of mesenchymal stem cells expanded using human serum for the treatment of refractory acute or chronic graft-versus-host disease. Twenty-eight expansions were started. In 22, a minimum of more than 1 x 106 mesenchymal stem cells/kg were obtained after a median of 26 days; this threshold was not obtained in the remaining cases. Ten patients received cells for the treatment of refractory or relapsed acute graft-versus-host disease and 8 for chronic disease. One patient treated for acute graft-versus-host disease obtained a complete response, 6 had a partial response and 3 did not respond. One of the chronic patients achieved complete remision, 3 a partial response, and 4 did not respond. The current study supports the use of this approach in less heavily treated patients for both acute and chronic graft-versus-host disease. The trial has been registered at ClinicalTrials.gov: identifier NCT00447460.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Soro , Adulto , Idoso , Proliferação de Células , Células Cultivadas , Técnicas de Cultura , Feminino , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
19.
Eur Spine J ; 20 Suppl 3: 353-60, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21779858

RESUMO

INTRODUCTION: In the last few years, great interest has been focused on tissue engineering as a potential therapeutic approach for musculoskeletal diseases. The role of metallic implants for spinal fusion has been tested in preclinical and clinical settings. Titanium and tantalum have excellent biocompatibility and mechanical properties and are being used in this situation. On the other hand, the therapeutic role of mesenchymal stem cells (MSC) is extensively explored for their multilineage differentiation into osteoblasts. OBJECTIVES: In vitro comparison of titanium and tantalum as MSCs scaffolds. MATERIAL AND METHODS: In the present study, we have compared the in vitro expansion capacity, viability, immunophenotype (both explored by flow cytometry) and multi-differentiation ability of MSC cultured in the presence of either titanium or tantalum fragments. The adherence of MSC to either metal was demonstrated by electron microscopy. RESULTS: Both metals were able to carry MSC when transferred to new culture flasks. In addition, our study shows that culture of MSC with titanium or tantalum improves cell viability and maintains all their biological properties, with no significant differences regarding the metal employed. CONCLUSION: This would support the use of these combinations for clinical purposes, especially in the spinal fusion and reconstruction setting.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osseointegração/fisiologia , Fusão Vertebral/instrumentação , Tantálio/farmacologia , Alicerces Teciduais/química , Titânio/farmacologia , Adulto , Apoptose/fisiologia , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Sobrevivência Celular/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Stem Cell Res Ther ; 12(1): 601, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876206

RESUMO

BACKGROUND: Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo. METHODS: Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. RESULTS: We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). CONCLUSIONS: Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Sangue Fetal , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA