Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(26): E2721-30, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979794

RESUMO

The bromodomain and extraterminal (BET) domain family of proteins binds to acetylated lysines on histones and regulates gene transcription. Recently, BET inhibitors (BETi) have been developed that show promise as potent anticancer drugs against various solid and hematological malignancies. Here we show that the structurally novel and orally bioavailable BET inhibitor RVX2135 inhibits proliferation and induces apoptosis of lymphoma cells arising in Myc-transgenic mice in vitro and in vivo. We find that BET inhibition exhibits broad transcriptional effects in Myc-transgenic lymphoma cells affecting many transcription factor networks. By examining the genes induced by BETi, which have largely been ignored to date, we discovered that these were similar to those induced by histone deacetylase inhibitors (HDACi). HDACi also induced cell-cycle arrest and cell death of Myc-induced murine lymphoma cells and synergized with BETi. Our data suggest that BETi sensitize Myc-overexpressing lymphoma cells partly by inducing HDAC-silenced genes, and suggest synergistic and therapeutic combinations by targeting the genetic link between BETi and HDACi.


Assuntos
Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Quinazolinonas/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Sinergismo Farmacológico , Linfoma , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
2.
Cancer Res ; 81(6): 1457-1471, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33372039

RESUMO

Neuroblastoma has a low mutation rate for the p53 gene. Alternative ways of p53 inactivation have been proposed in neuroblastoma, such as abnormal cytoplasmic accumulation of wild-type p53. However, mechanisms leading to p53 inactivation via cytoplasmic accumulation are not well investigated. Here we show that the neuroblastoma risk-associated locus 6p22.3-derived tumor suppressor NBAT1 is a p53-responsive lncRNA that regulates p53 subcellular levels. Low expression of NBAT1 provided resistance to genotoxic drugs by promoting p53 accumulation in cytoplasm and loss from mitochondrial and nuclear compartments. Depletion of NBAT1 altered CRM1 function and contributed to the loss of p53-dependent nuclear gene expression during genotoxic drug treatment. CRM1 inhibition rescued p53-dependent nuclear functions and sensitized NBAT1-depleted cells to genotoxic drugs. Combined inhibition of CRM1 and MDM2 was even more effective in sensitizing aggressive neuroblastoma cells with p53 cytoplasmic accumulation. Thus, our mechanistic studies uncover an NBAT1-dependent CRM1/MDM2-based potential combination therapy for patients with high-risk neuroblastoma. SIGNIFICANCE: This study shows how a p53-responsive lncRNA mediates chemotherapeutic response by modulating nuclear p53 pathways and identifies a potential treatment strategy for patients with high-risk neuroblastoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neuroblastoma/tratamento farmacológico , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Fracionamento Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/cirurgia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Longo não Codificante/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
3.
Cell Death Dis ; 8(8): e2982, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796244

RESUMO

Metastatic malignant melanoma continues to be a challenging disease despite clinical translation of the comprehensive understanding of driver mutations and how melanoma cells evade immune attack. In Myc-driven lymphoma, efficacy of epigenetic inhibitors of the bromodomain and extra-terminal domain (BET) family of bromodomain proteins can be enhanced by combination therapy with inhibitors of the DNA damage response kinase ATR. Whether this combination is active in solid malignancies like melanoma, and how it relates to immune therapy, has not previously investigated. To test efficacy and molecular consequences of combination therapies cultured melanoma cells were used. To assess tumor responses to therapies in vivo we use patient-derived xenografts and B6 mice transplanted with B16F10 melanoma cells. Concomitant inhibition of BET proteins and ATR of cultured melanoma cells resulted in similar effects as recently shown in lymphoma, such as induction of apoptosis and p62, implicated in autophagy, senescence-associated secretory pathway and ER stress. In vivo, apoptosis and suppression of subcutaneous growth of patient-derived melanoma and B16F10 cells were observed. Our data suggest that ATRI/BETI combination therapies are effective in melanoma.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Quinolinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Linfoma/tratamento farmacológico , Linfoma/genética , Melanoma/genética , Camundongos , Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Cancer Res ; 76(8): 2376-83, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26941288

RESUMO

Agents that trigger cell differentiation are highly efficacious in treating certain cancers, but such approaches are not generally effective in most malignancies. Compounds such as DMSO and hexamethylene bisacetamide (HMBA) have been used to induce differentiation in experimental systems, but their mechanisms of action and potential range of uses on that basis have not been developed. Here, we show that HMBA, a compound first tested in the oncology clinic over 25 years ago, acts as a selective bromodomain inhibitor. Biochemical and structural studies revealed an affinity of HMBA for the second bromodomain of BET proteins. Accordingly, both HMBA and the prototype BET inhibitor JQ1 induced differentiation of mouse erythroleukemia cells. As expected of a BET inhibitor, HMBA displaced BET proteins from chromatin, caused massive transcriptional changes, and triggered cell-cycle arrest and apoptosis in Myc-induced B-cell lymphoma cells. Furthermore, HMBA exerted anticancer effects in vivo in mouse models of Myc-driven B-cell lymphoma. This study illuminates the function of an early anticancer agent and suggests an intersection with ongoing clinical trials of BET inhibitor, with several implications for predicting patient selection and response rates to this therapy and starting points for generating BD2-selective BET inhibitors. Cancer Res; 76(8); 2376-83. ©2016 AACR.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
5.
PLoS One ; 10(4): e0124515, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849533

RESUMO

The molecular mechanisms by which dietary fatty acids are absorbed by the intestine, and the way in which the process is regulated are poorly understood. In a genetic screen for mutations affecting fat accumulation in the intestine of Caenorhabditis elegans, nematode worms, we have isolated mutations in the aex-5 gene, which encodes a Kex2/subtilisin-family, Ca2+-sensitive proprotein convertase known to be required for maturation of certain neuropeptides, and for a discrete step in an ultradian rhythmic phenomenon called the defecation motor program. We demonstrate that aex-5 mutants have markedly lower steady-state levels of fat in the intestine, and that this defect is associated with a significant reduction in the rate at which labeled fatty acid derivatives are taken up from the intestinal lumen. Other mutations affecting the defecation motor program also affect steady-state levels of triglycerides, suggesting that the program is required per se for the proper accumulation of neutral lipids. Our results suggest that an important function of the defecation motor program in C. elegans is to promote the uptake of an important class of dietary nutrients. They also imply that modulation of the program might be one way in which worms adjust nutrient uptake in response to altered metabolic status.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Defecação , Endopeptidases/genética , Animais , Caenorhabditis elegans/genética , Gorduras na Dieta/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Mutação
6.
Clin Cancer Res ; 17(22): 7067-79, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21933891

RESUMO

PURPOSE: The transcription factor c-Myc (or "Myc") is a master regulator of pathways driving cell growth and proliferation. MYC is deregulated in many human cancers, making its downstream target genes attractive candidates for drug development. We report the unexpected finding that B-cell lymphomas from mice and patients exhibit a striking correlation between high levels of Myc and checkpoint kinase 1 (Chk1). EXPERIMENTAL DESIGN: By in vitro cell biology studies as well as preclinical studies using a genetically engineered mouse model, we evaluated the role of Chk1 in Myc-overexpressing cells. RESULTS: We show that Myc indirectly induces Chek1 transcript and protein expression, independently of DNA damage response proteins such as ATM and p53. Importantly, we show that inhibition of Chk1, by either RNA interference or a novel highly selective small molecule inhibitor, results in caspase-dependent apoptosis that affects Myc-overexpressing cells in both in vitro and in vivo mouse models of B-cell lymphoma. CONCLUSION: Our data suggest that Chk1 inhibitors should be further evaluated as potential drugs against Myc-driven malignancies such as certain B-cell lymphoma/leukemia, neuroblastoma, and some breast and lung cancers.


Assuntos
Linfoma de Células B/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA