Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 167(1): 38-51, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653723

RESUMO

How is the quantal size in neurotransmitter release adjusted for various firing levels? We explored the possible mechanisms that regulate acetylcholine (ACh) release from cholinergic interneurons using an ultra-mini superfusion system. After preloading [3 H]ACh in rat striatal cholinergic interneurons, the release was elicited by electrical stimulation under a condition in which presynaptic cholinergic and dopaminergic feedback was inhibited. [3 H]ACh release was reproducible at intervals of more than 10 min; shorter intervals resulted in reduced levels of ACh release. Upon persistent stimulation for 10 min, ACh release transiently increased, before gradually decreasing. Vesamicol, an inhibitor of the vesicular ACh transporter (VAChT), had no effect on the release induced by the first single pulse, but it reduced the release caused by subsequent pulses. Vesamicol also reduced the [3 H]ACh release evoked by multiple pulses, and the inhibition was enhanced by repetitive stimulation. The decreasing phase of [3 H]ACh release during persistent stimulation was accelerated by vesamicol treatment. Thus, it is likely that releasable ACh was slowly compensated for via VAChT during and after stimulation, changing the vesicular ACh content. In addition, ACh release per pulse decreased under high-frequency stimulation. The present results suggest that ACh release from striatal cholinergic interneurons may be adjusted by changes in the quantal size due to slow replenishment via VAChT, and by a reduction in release probability upon high-frequency stimulation. These two distinct processes likely enable the fine tuning of neurotransmission and neuroprotection/limitation against excessive output and have important physiological roles in the brain.

2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047478

RESUMO

Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an intestinal disorder that causes prolonged inflammation of the gastrointestinal tract. Currently, the etiology of IBD is not fully understood and treatments are insufficient to completely cure the disease. In addition to absorbing essential nutrients, intestinal epithelial cells prevent the entry of foreign antigens (micro-organisms and undigested food) through mucus secretion and epithelial barrier formation. Disruption of the intestinal epithelial homeostasis exacerbates inflammation. Thus, the maintenance and reinforcement of epithelial function may have therapeutic benefits in the treatment of IBD. Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors for acetylcholine that are expressed in intestinal epithelial cells. Recent studies have revealed the role of mAChRs in the maintenance of intestinal epithelial homeostasis. The importance of non-neuronal acetylcholine in mAChR activation in epithelial cells has also been recognized. This review aimed to summarize recent advances in research on mAChRs for intestinal epithelial homeostasis and the involvement of non-neuronal acetylcholine systems, and highlight their potential as targets for IBD therapy.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal , Humanos , Acetilcolina , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Receptores Muscarínicos , Inflamação , Homeostase
3.
J Neurochem ; 160(3): 342-355, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878648

RESUMO

Cholinergic transmission underlies higher brain functions such as cognition and movement. To elucidate the process whereby acetylcholine (ACh) release is maintained and regulated in the central nervous system, uptake of [3 H]choline and subsequent synthesis and release of [3 H]ACh were investigated in rat striatal segments. Incubation with [3 H]choline elicited efficient uptake via high-affinity choline transporter-1, resulting in accumulation of [3 H]choline and [3 H]ACh. However, following inhibition of ACh esterase (AChE), incubation with [3 H]choline led predominantly to the accumulation of [3 H]ACh. Electrical stimulation and KCl depolarization selectively released [3 H]ACh but not [3 H]choline. [3 H]ACh release gradually declined upon repetitive stimulation, whereas the release was reproducible under inhibition of AChE. [3 H]ACh release was abolished after treatment with vesamicol, an inhibitor of vesicular ACh transporter. These results suggest that releasable ACh is continually replenished from the cytosol to releasable pools of cholinergic vesicles to maintain cholinergic transmission. [3 H]ACh release evoked by electrical stimulation was abolished by tetrodotoxin, but that induced by KCl was largely resistant. ACh release was Ca2+ dependent and exhibited slightly different sensitivities to N- and P-type Ca2+ channel toxins (ω-conotoxin GVIA and ω-agatoxin IVA, respectively) between both stimuli. [3 H]ACh release was negatively regulated by M2 muscarinic and D2 dopaminergic receptors. The present results suggest that inhibition of AChE within cholinergic neurons and of presynaptic negative regulation of ACh release contributes to maintenance and facilitation of cholinergic transmission, providing a potentially useful clue for the development of therapies for cholinergic dysfunction-associated disorders, in addition to inhibition of synaptic cleft AChE.


Assuntos
Acetilcolina/biossíntese , Neostriado/metabolismo , Acetilcolinesterase/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Colina/metabolismo , Inibidores da Colinesterase/farmacologia , Estimulação Elétrica , Masculino , Cloreto de Potássio/farmacologia , Compostos Radiofarmacêuticos , Ratos , Ratos Wistar , Receptor Muscarínico M2/efeitos dos fármacos , Receptor Muscarínico M2/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
4.
J Neurochem ; 149(5): 605-623, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30968952

RESUMO

Regulation of neurotransmitter release in the central nervous system is complex. Here, we investigated regulatory mechanisms for acetylcholine (ACh) release from cholinergic neurons by performing superfusion experiments with rat striatal segments after labelling the cellular ACh pool with [3 H]choline. Electrical stimulation-evoked pronounced [3 H]ACh release from cholinergic neurons. The estimated quantity of [3 H]ACh release per pulse of electrical stimulation was reduced by an increase in stimulus frequency, showing an inverse correlation between release probability of ACh and neuronal excitation. ACh release was also negatively regulated by pre-synaptic muscarinic ACh receptors (mAChRs). The autoinhibition induced by released ACh was predominantly suppressed by the M2 -selective antagonist AF-DX 116, partially inhibited by M3 -selective darifenacin, and minimally by M4 -selective PD 102807. Other subtype-selective antagonists had no effect at subtype-selective concentrations. ACh esterase (AChE) inhibitors (diisopropylfluorophosphate, donepezil and galantamine) at concentrations that mostly inhibit esterase activity reduced [3 H]ACh release, and the reduction was abolished by treatment with atropine. This implies that pre-synaptic autoreceptors are activated more after blockade of ACh hydrolysis, leading to autoinhibition of ACh release and consequent reduction in synaptic ACh concentrations. [3 H]efflux was also enhanced by ACh uptake inhibitors (100 µM hemicholinium-3 and physostigmine), regardless of ACh hydrolysis. This study shows that synaptic ACh concentrations in striatal cholinergic neurons are regulated in a complex manner by many factors such as release probability, pre-synaptic M2 /M3 /M4 mAChRs, AChE and post-synaptic ACh uptake, and provides important information about cholinergic neurotransmission for future exploration of therapeutic strategies for Alzheimer's and other central nervous system diseases. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/openscience-badges/.


Assuntos
Acetilcolina/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Inibidores da Colinesterase/farmacologia , Antagonistas Muscarínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores Muscarínicos/metabolismo , Transmissão Sináptica/fisiologia
5.
J Biol Chem ; 291(5): 2345-56, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644465

RESUMO

The calcitonin (CT)/CT gene-related peptide (CGRP) family is conserved in vertebrates. The activities of this peptide family are regulated by a combination of two receptors, namely the calcitonin receptor (CTR) and the CTR-like receptor (CLR), and three receptor activity-modifying proteins (RAMPs). Furthermore, RAMPs act as escort proteins by translocating CLR to the cell membrane. Recently, CT/CGRP family peptides have been identified or inferred in several invertebrates. However, the molecular characteristics and relevant functions of the CTR/CLR and RAMPs in invertebrates remain unclear. In this study, we identified three CT/CGRP family peptides (Bf-CTFPs), one CTR/CLR-like receptor (Bf-CTFP-R), and three RAMP-like proteins (Bf-RAMP-LPs) in the basal chordate amphioxus (Branchiostoma floridae). The Bf-CTFPs were shown to possess an N-terminal circular region typical of the CT/CGRP family and a C-terminal Pro-NH2. The Bf-CTFP genes were expressed in the central nervous system and in endocrine cells of the midgut, indicating that Bf-CTFPs serve as brain and/or gut peptides. Cell surface expression of the Bf-CTFP-R was enhanced by co-expression with each Bf-RAMP-LP. Furthermore, Bf-CTFPs activated Bf-CTFP-R·Bf-RAMP-LP complexes, resulting in cAMP accumulation. These results confirmed that Bf-RAMP-LPs, like vertebrate RAMPs, are prerequisites for the function and translocation of the Bf-CTFP-R. The relative potencies of the three peptides at each receptor were similar. Bf-CTFP2 was a potent ligand at all receptors in cAMP assays. Bf-RAMP-LP effects on ligand potency order were distinct to vertebrate CGRP/adrenomedullin/amylin receptors. To the best of our knowledge, this is the first molecular and functional characterization of an authentic invertebrate CT/CGRP family receptor and RAMPs.


Assuntos
Calcitonina/genética , Calcitonina/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Anfioxos/metabolismo , Família Multigênica , Adrenomedulina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Cordados , Clonagem Molecular , AMP Cíclico/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Estrutura Terciária de Proteína , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Homologia de Sequência de Aminoácidos
6.
J Neurochem ; 143(1): 76-86, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28700094

RESUMO

In addition to hydrolysis by acetylcholine esterase (AChE), acetylcholine (ACh) is also directly taken up into brain tissues. In this study, we examined whether the uptake of ACh is involved in the regulation of synaptic ACh concentrations. Superfusion experiments with rat striatal segments pre-incubated with [3 H]choline were performed using an ultra-mini superfusion vessel, which was developed to minimize superfusate retention within the vessel. Hemicholinium-3 (HC-3) at concentrations less than 1 µM, selectively inhibited the uptake of [3 H]choline by the high affinity-choline transporter 1 and had no effect on basal and electrically evoked [3 H]efflux in superfusion experiments. In contrast, HC-3 at higher concentrations, as well as tetraethylammonium (>10 µM), which inhibited the uptake of both [3 H]choline and [3 H]ACh, increased basal [3 H]overflow and potentiated electrically evoked [3 H]efflux. These effects of HC-3 and tetraethylammonium were also observed under conditions where tissue AChE was irreversibly inactivated by diisopropylfluorophosphate. Specifically, the potentiation of evoked [3 H]efflux was significantly higher in AChE-inactivated preparations and was attenuated by atropine. On the other hand, striatal segments pre-incubated with [3 H]ACh failed to increase [3 H]overflow in response to electrical stimulation. These results show that synaptic ACh concentrations are significantly regulated by the postsynaptic uptake of ACh, as well as by AChE hydrolysis and modulation of ACh release mediated through presynaptic muscarinic ACh receptors. In addition, these data suggest that the recycling of ACh-derived choline may be minor in cholinergic terminals. This study reveals a new mechanism of cholinergic transmission in the central nervous system.


Assuntos
Acetilcolina/metabolismo , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Transporte Biológico/fisiologia , Colina/metabolismo , Hemicolínio 3/metabolismo , Masculino , Técnicas de Cultura de Órgãos/métodos , Ratos , Ratos Wistar
7.
J Neurochem ; 139(4): 566-575, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27627023

RESUMO

Functional acetylcholine receptors (AChRs) were recently demonstrated to exist not only in the plasma membrane but also intracellularly in brain tissues. In order to activate intracellular AChRs, endogenous hydrophilic ACh must cross the plasma membrane. Here, we examined the pharmacological characteristics of this process, including whether it is mediated by active ACh uptake. When ACh esterase (AChE) was suppressed by diisopropylfluorophosphate, [3 H]ACh was effectively taken up into segments of rat cerebral cortex and other brain regions, in contrast to peripheral tissues such as liver and kidney. The uptake of [3 H]ACh in rat cerebral cortex was temperature-dependent, and the uptake capacity was comparable to that of [3 H]choline. However, [3 H]ACh uptake was inhibited by lower concentrations of ACh, carbachol, tetraethylammonium (TEA), compared with uptake of [3 H]choline. Uptake of [3 H]ACh was also inhibited by several organic cations, including choline, hemicholinium-3 (HC-3), quinidine, decynium 22, clonidine, diphenhydramine, but was little affected by some amino acids and biogenic amines, corticosterone, spermine, atropine, and tetrodotoxin. Unlike diisopropylfluorophosphate, several ACh esterase inhibitors, including drugs for Alzheimer's disease, such as donepezil, galantamine, and rivastigmine, also suppressed the uptake of [3 H]ACh, but not [3 H]choline. These results indicate that in the brain, ACh is specifically taken up through a unique transport system with different pharmacological properties from known organic cation transporters (OCTs), and suggest that this mechanism may be involved in intracellular cholinergic transmission in the brain.


Assuntos
Acetilcolina/antagonistas & inibidores , Acetilcolina/metabolismo , Córtex Cerebral/metabolismo , Inibidores da Colinesterase/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Coração/fisiologia , Isoflurofato/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos , Ratos Wistar
8.
J Cell Sci ; 127(Pt 14): 3131-40, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24829147

RESUMO

The M1 muscarinic acetylcholine receptor (M1-mAChR, encoded by CHRM1) is a G-protein-coupled membrane receptor that is activated by extracellular cholinergic stimuli. Recent investigations have revealed the intracellular localization of M1-mAChR. In this study, we observed constitutive internalization of M1-mAChR in mouse neuroblastoma N1E-115 cells without agonist stimulation. Constitutive internalization depended on dynamin, clathrin and the adaptor protein-2 (AP-2) complex. A WxxI motif in the M1-mAChR C-terminus is essential for its constitutive internalization, given that replacement of W(442) or I(445) with alanine residues abolished constitutive internalization. This WxxI motif resembles YxxΦ, which is the canonical binding motif for the µ2 subunit of the AP-2 complex. The M1-mAChR C-terminal WxxI motif interacted with AP-2 µ2. W442A and I445A mutants of the M1-mAChR C-terminal sequence lost AP-2-µ2-binding activity, whereas the W442Y mutant bound more effectively than wild type. Consistent with these results, W442A and I445A M1-mAChR mutants selectively localized to the cell surface. By contrast, the W442Y receptor mutant was found only at intracellular sites. Our data indicate that the cellular distribution of M1-mAChR is governed by the C-terminal tryptophan-based motif, which mediates constitutive internalization.


Assuntos
Clatrina/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Triptofano/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Microscopia Confocal , Receptor Muscarínico M1/genética , Transfecção
9.
Biochim Biophys Acta ; 1842(4): 635-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24365239

RESUMO

Impairment of epithelial barrier is observed in various intestinal disorders including inflammatory bowel diseases (IBD). Numerous factors may cause temporary damage of the intestinal epithelium. A complex network of highly divergent factors regulates healing of the epithelium to prevent inflammatory response. However, the exact repair mechanisms involved in maintaining homeostatic intestinal barrier integrity remain to be clarified. In this study, we demonstrate that activation of M1 muscarinic acetylcholine receptor (mAChR) augments the restitution of epithelial barrier function in T84 cell monolayers after ethanol-induced epithelial injury, via ERK-dependent phosphorylation of focal adhesion kinase (FAK). We have shown that ethanol injury decreased the transepithelial electrical resistance (TER) along with the reduction of ERK and FAK phosphorylation. Carbachol (CCh) increased ERK and FAK phosphorylation with enhanced TER recovery, which was completely blocked by either MT-7 (M1 antagonist) or atropine. The CCh-induced enhancement of TER recovery was also blocked by either U0126 (ERK pathway inhibitor) or PF-228 (FAK inhibitor). Treatment of T84 cell monolayers with interferon-γ (IFN-γ) impaired the barrier function with the reduction of FAK phosphorylation. The CCh-induced ERK and FAK phosphorylation were also attenuated by the IFN-γ treatment. Immunological and binding experiments exhibited a significant reduction of M1 mAChR after IFN-γ treatment. The reduction of M1 mAChR in inflammatory area was also observed in surgical specimens from IBD patients, using immunohistochemical analysis. These findings provide important clues regarding mechanisms by which M1 mAChR participates in the maintenance of intestinal barrier function under not only physiological but also pathological conditions.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Mucosa Intestinal/metabolismo , Receptor Muscarínico M1/fisiologia , Linhagem Celular Tumoral , Impedância Elétrica , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/análise , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/análise , Humanos , Imuno-Histoquímica , Interferon gama/farmacologia , Fosforilação , Receptor Muscarínico M1/análise
10.
Ocul Surf ; 32: 60-70, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242319

RESUMO

PURPOSE: Sensory nerve terminals are highly distributed in the cornea, and regulate ocular surface sensation and homeostasis in response to various endogenous and exogenous stimuli. However, little is known about mediators regulating the physiological and pathophysiological activities of corneal sensory nerves. The aim of this study was to investigate the presence of cholinergic regulation in sensory nerves in the cornea. METHODS: Localization of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (vAChT) was evaluated using western blotting and immunohistochemical analysis. The synthesis and liberation of acetylcholine from the cornea were assessed using corneal segments pre-incubated with [3H]choline. The responsiveness of corneal neurons and nerves to cholinergic drugs was explored using calcium imaging with primary cultures of trigeminal ganglion neurons and extracellular recording from corneal preparations in guinea pigs. RESULTS: ChAT, but not vAChT, was highly distributed in the corneal epithelium. In corneal segments, [3H] acetylcholine was synthesized from [3H]choline, and was also released in response to electrical stimuli. In cultured corneal neurons, the population sensitive to a transient receptor potential melastatin 8 (TRPM8) agonist exhibited high probability of responding to nicotine in a calcium imaging experiment. The firing frequency of cold-sensitive corneal nerves was increased by the application of nicotine, but diminished by an α4 nicotinic acetylcholine receptor antagonist. CONCLUSIONS: The corneal epithelium can synthesize and release acetylcholine. Corneal acetylcholine can excite sensory nerves via nicotinic receptors containing the α4 subunit. Therefore, corneal acetylcholine may be one of the important regulators of corneal nerve activity arranging ocular surface condition and sensation.


Assuntos
Acetilcolina , Córnea , Receptores Nicotínicos , Animais , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Córnea/inervação , Córnea/metabolismo , Cobaias , Receptores Nicotínicos/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Western Blotting , Células Cultivadas , Masculino , Gânglio Trigeminal/metabolismo , Imuno-Histoquímica , Colina O-Acetiltransferase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
11.
J Neurochem ; 126(3): 360-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23678982

RESUMO

Muscarinic acetylcholine receptors (mAChRs) are well known to transmit extracellular cholinergic signals into the cytoplasm from their position on the cell surface. However, we show here that M1-mAChRs are also highly expressed on intracellular membranes in neurons of the telencephalon and activate signaling cascades distinct from those of cell surface receptors, contributing uniquely to synaptic plasticity. Radioligand-binding experiments with cell-permeable and -impermeable ligands and immunohistochemical observations revealed intracellular and surface distributions of M1-mAChRs in the hippocampus and cortex of rats, mice, and humans, in contrast to the selective occurrence on the cell surface in other tissues. All intracellular muscarinic-binding sites were abolished in M1-mAChR-gene-knockout mice. Activation of cell surface M1-mAChRs in rat hippocampal neurons evoked phosphatidylinositol hydrolysis and network oscillations at theta rhythm, and transiently enhanced long-term potentiation. On the other hand, activation of intracellular M1-mAChRs phosphorylated extracellular-regulated kinase 1/2 and gradually enhanced long-term potentiation. Our data thus demonstrate that M1-mAChRs function at both surface and intracellular sites in telencephalon neurons including the hippocampus, suggesting a new mode of cholinergic transmission in the central nervous system.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptor Muscarínico M1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Membrana Celular/química , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
12.
J Neurochem ; 118(6): 958-67, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21740440

RESUMO

Signaling by muscarinic agonists is thought to result from the activation of cell surface acetylcholine receptors (mAChRs) that transmit extracellular signals to intracellular systems. In N1E-115 neuroblastoma cells, we detected both plasma membrane and intracellular M(1) -mAChRs using both biochemical and pharmacological methods. In intact cells, both plasma membrane and intracellular M(1) -mAChRs were detected by the hydrophobic ligand probe, 1-quinuclidinyl-[phenyl-4-(3) H]-benzilate ([(3) H]-QNB) whereas the hydrophilic probe, 1-[N-methyl-(3) H] scopolamine ([(3) H]-NMS), detected only cell surface receptors. These probes detected comparable numbers of receptors in isolated membrane preparations. Immunohistochemical studies with M(1) -mAChR antibody also detected both cell-surface and intracellular M(1) -mAChRs. Carbachol-stimulated phosphatidylinositol hydrolysis and Ca(2+) mobilization were completely inhibited by a cell-impermeable M(1) antagonist, muscarinic toxin -7 and the G(q/11) inhibitor YM-254890. However, carbachol-stimulated extracellular-regulated kinase 1/2 activation was unaffected by muscarinic toxin-7, but was blocked by the cell-permeable antagonist, pirenzepine. extracellular regulated kinase 1/2 phosphorylation was resistant to blockade of G(q/11) (YM-254890) and protein kinase C (bisindolylmaleimide I). Our data suggest that the geographically distinct M(1) -mAChRs (cell surface versus intracellular) can signal via unique signaling pathways that are differentially sensitive to cell-impermeable versus cell-permeable antagonists. Our data are of potential physiological relevance to signaling that affects both cognitive and neurodegenerative processes.


Assuntos
Neuroblastoma/metabolismo , Receptor Muscarínico M1/metabolismo , Animais , Atropina/farmacologia , Western Blotting , Cálcio/metabolismo , Carbacol/metabolismo , Carbacol/farmacologia , Linhagem Celular Tumoral , Venenos Elapídicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Fosfatos de Inositol/metabolismo , Cinética , Camundongos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , N-Metilescopolamina/farmacologia , Peptídeos Cíclicos/farmacologia , Pirenzepina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinuclidinil Benzilato/farmacologia , Receptores de Superfície Celular/efeitos dos fármacos
13.
J Pharmacol Exp Ther ; 339(1): 186-93, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21719469

RESUMO

Distinct pharmacological phenotypes of muscarinic acetylcholine receptors (mAChRs) have been proposed. We compared the pharmacological profiles of mAChRs in intact segments and homogenates of rat cerebral cortex and other tissues by using radioligand binding assays with [(3)H]N-methylscopolamine ([(3)H]NMS). Recombinant M(1) and M(3) mAChRs were also examined. The density of mAChRs detected by [(3)H]NMS binding to rat cerebral cortex segments and homogenates was the same (approximately 1400 fmol/mg tissue protein), but the dissociation constant of [(3)H]NMS was significantly different (1400-1700 pM in segments and 260 pM in homogenates). A wide variation in [(3)H]NMS binding affinity was also observed among the segments of other tissues (ranging from 139 pM in urinary bladder muscle to 1130 pM in the hippocampus). The mAChRs of cerebral cortex were composed of M(1), M(2), M(3), and M(4) subtypes, which showed typical subtype pharmacology in the homogenates. However, in the cortex segments the M(3) subtype showed a low selectivity for M(3) antagonists (darifenacin, solifenacin) and was not distinguished by the M(3) antagonists from the other subtypes. Recombinant M(1) and M(3) mAChRs showed high affinity for [(3)H]NMS and subtype-specific pharmacology for each tested ligand. The present binding study under conditions where tissue integrity was kept demonstrates a wide variation in [(3)H]NMS binding affinity among mAChRs of many rat tissues and the presence of an atypical M(3) phenotype in the cerebral cortex, suggesting that the pharmacological properties of mAChRs are not necessarily constant, rather they may be significantly modified by tissue integrity and tissue type.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Animais , Ligação Competitiva/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Interpretação Estatística de Dados , Técnicas In Vitro , Cinética , Masculino , Antagonistas Muscarínicos/metabolismo , Músculo Liso/metabolismo , N-Metilescopolamina/metabolismo , Fenótipo , Ratos , Ratos Wistar , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/efeitos dos fármacos , Receptores Muscarínicos/metabolismo
14.
J Urol ; 183(2): 812-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20034639

RESUMO

PURPOSE: Although alpha(1L)-adrenoceptor is recognized as a target of alpha(1) antagonist therapy for benign prostatic hyperplasia, the most common techniques, such as immunohistochemistry and in situ hybridization, are not applicable to examine alpha(1L)-AR vs alpha(1A)-AR tissue distribution because alpha(1L)-AR is now considered another phenotype sharing the alpha(1A)-AR gene and protein molecule. We labeled the alpha(1A) and alpha(1L)-adrenoceptor selective antagonist silodosin (Kissei Pharmaceutical, Matsumoto, Japan) with the fluorophore Alexa Fluor(R) 488 (Alexa-488-silodosin) to visualize alpha(1L)-AR expression. MATERIALS AND METHODS: Radioligand binding and functional bioassay experiments were done to assess alpha(1)-AR expression in Chinese hamster ovary cells and human prostate tissues. Confocal imaging was subsequently performed. RESULTS: Although Alexa-488-silodosin had about 10 times lower affinity for all alpha(1)-AR subtypes than silodosin in binding and functional studies, it had high selectivity to alpha(1A) and alpha(1L)-ARs. Confocal imaging revealed clear localization of fluorescence on the membrane of Chinese hamster ovary cells expressing alpha(1A)-AR but not alpha(1B)-and alpha(1D)-ARs, and in the muscle layer of the human prostate. The fluorescent signal in Chinese hamster ovary cells disappeared in the presence of 3 nM prazosin but fluorescence was observed in the human prostate even in the presence of 100 nM prazosin. CONCLUSIONS: Alexa-488-silodosin is a powerful fluorescent probe with high selectivity to alpha(1A) and alpha(1L)-ARs. Thus, Alexa-488-silodosin successfully visualizes the site of alpha(1L)-ARs in the muscle layer of the human prostate without losing its distinct pharmacological profile.


Assuntos
Fluorbenzenos , Indóis , Próstata/química , Próstata/metabolismo , Receptores Adrenérgicos alfa 1/análise , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fluorescência , Masculino , Distribuição Tecidual
15.
J Pharmacol Sci ; 113(2): 169-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20508391

RESUMO

Two distinct alpha(1)-adrenoceptor phenotypes (alpha(1A)- and alpha(1L)-ARs) are known to originate from a single ADRA1A(alpha(1a)) gene by an as-yet-unknown mechanism. We hypothesized that an alpha(1a)-AR-interacting protein could generate the alpha(1L)-AR phenotype and we sought to identify such a protein and to examine its effects on the expression of alpha(1A) and alpha(1L) phenotypes. Cysteine-rich epidermal growth factor-like domain 1alpha (CRELD1alpha) was first identified using a yeast two-hybrid approach as an alpha(1a)-AR-interacting protein. Transfection of alpha(1a)-AR cDNA alone yielded Chinese hamster ovary (CHO) cells expressing alpha(1A)-ARs having a predominant high affinity site for prazosin, with a low proportion (<10%) of prazosin-low affinity sites (alpha(1L)-AR). Knockdown of endogenous CHO-CRELD1alpha [alpha(1a)-CKD(alpha(1A)-enhanced) cells] enhanced the expression of alpha(1A)-AR, whereas over-expression of CRELD1alpha reduced alpha(1A)-AR expression, yielding alpha(1a)-COE(alpha(1L)-dominant) cells expressing a high proportion (50%) of the alpha(1L)-AR phenotype. The ligand binding and functional agonist and antagonist profiles in alpha(1a)-CKD(alpha(1A)-enhanced) and alpha(1a)-COE(alpha(1L)-dominant) cell lines were entirely in accord with the alpha(1A)-AR and alpha(1L)-AR phenotypes observed in intact tissues. CRELD1alpha down-regulates expression of the alpha(1A)-AR, thereby enhancing the proportion of expression of the alpha(1L)-AR phenotype. The alpha(1L)-AR-expressing alpha(1a)-COE(alpha(1L)-dominant) cell line reflects accurately the phenotype of this AR observed in vivo and will facilitate development of alpha(1L)-AR-targeted drugs.


Assuntos
Células CHO , Moléculas de Adesão Celular/isolamento & purificação , Moléculas de Adesão Celular/fisiologia , Regulação para Baixo , Proteínas da Matriz Extracelular/isolamento & purificação , Proteínas da Matriz Extracelular/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Moléculas de Adesão Celular/farmacologia , Cricetinae , Cricetulus , Proteínas da Matriz Extracelular/farmacologia , Feminino
16.
J Pharmacol Sci ; 113(3): 276-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20595785

RESUMO

The mechanism for sustained Ca2+ influx activated by G protein-coupled receptors was examined. In Chinese hamster ovary cells expressing recombinant human endothelin type B receptor (ET(B)R) and endogenous P2Y receptor (P2Y-R), endothelin-1 elicited a sustained Ca2+ influx depending on G(q/11 )protein, phospholipase C (PLC), Na+/H+ exchanger (NHE), and p38 mitogen-activated protein kinase (p38MAPK), whereas P2Y-R-induced sustained Ca2+ influx was negligible. Functional studies showed that NHE activation by ET(B)R was mediated via p38MAPK but not G(q/11)/PLC, while that by P2Y-R involves only G(q/11)/PLC/p38MAPK. These results suggest that G(q/11)/PLC-independent NHE activation via p38MAPK plays an important role in ET(B)R- mediated sustained Ca2+ influx.


Assuntos
Sinalização do Cálcio , Endotelina-1/metabolismo , Receptor de Endotelina B/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Concentração Osmolar , Fosforilação , Agonistas do Receptor Purinérgico P2 , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/genética , Receptores Purinérgicos P2/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Fatores de Tempo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
J Pharmacol Sci ; 112(4): 444-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20424384

RESUMO

Muscarinic acetylcholine receptors (mAChRs) of rat cerebral cortex were evaluated using a tissue segment radioligand binding assay. [(3)H]-Quinuclidinyl benzilate (QNB, a hydrophobic ligand) specifically bound to mAChRs in the cortex segments. The total mAChRs level was approximately 2,000 fmol/mg protein, which was estimated after incubation for 120 min at 37 degrees C or for 8 h at 4 degrees C. These mAChRs were a mixture of high- and low-affinity sites for N-methylscopolamine (NMS) in a 70:30 ratio. In contrast, only a single high-affinity site for NMS was detected following incubation for 30 min at 37 degrees C, whose abundance was about 70% of that of the total mAChRs. Atropine showed a single affinity for mAChRs under all conditions. These indicate that mAChRs are constitutively expressed not only on plasma membrane sites but also at intracellular sites in rat cerebral cortex and that the receptors at both sites have different affinities for NMS. Acetylcholine completely inhibited [(3)H]-QNB binding to both mAChRs without any change in the subcellular distribution, suggesting the possibility that acetylcholine can access, and bind to, both mAChRs in intact tissue. Two different affinity states for acetylcholine were detected only in plasma membrane mAChRs at 37 degrees C. The present study demonstrates a unique subcellular distribution, and distinct pharmacological profiles, of mAChRs in rat cerebral cortex.


Assuntos
Córtex Cerebral/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/farmacologia , Animais , Atropina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Técnicas In Vitro , Masculino , N-Metilescopolamina/farmacologia , Quinuclidinil Benzilato/metabolismo , Ensaio Radioligante , Ratos , Ratos Wistar
18.
Int J Urol ; 17(1): 31-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19694838

RESUMO

Alpha(1)-adrenoceptors are involved in physiological functions such as urinary excretion and ejaculation in the lower urinary tract (LUT). Several alpha(1) antagonists are clinically used for the treatment of urinary obstruction in patients with benign prostatic hyperplasia. At present, three classical alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) have been identified, among which the alpha(1A) and alpha(1D)-adrenoceptor subtypes have been regarded as the main targets of alpha(1) antagonist therapy for LUT symptoms. Prazosin has been used as a prototypic, classical antagonist, to characterize alpha(1)-adrenoceptors pharmacologically, (i.e. all classical alpha(1)-adrenoceptor subtypes show high-affinity for the drug). However, we found that alpha(1)-adrenoceptors in the LUT show atypical low-affinity for prazosin. Therefore, the concept alpha(1L)-receptor, which indicates alpha(1)-adrenoceptor(s) showing low-affinity for prazosin has been introduced. A recent study demonstrated that the alpha(1L)-adrenoceptor is a specific phenotype present in the many intact tissues including human LUT, and that it originates from the ADRA1A gene. Therefore, the alpha(1L)-adrenoceptor in the LUT is now re-defined as alpha(1A(L))-adrenoceptor. The physiological and pharmacological difference between classical alpha(1A(H),) and alpha(1A(L)) which is the native receptor expressed in the LUT is of special interest as it provides fundamental bases for urological alpha(1A)-adrenoceptor blocking pharmacotherapy. Here, we briefly review the alpha(1)-adrenoceptors in the LUT with special reference to phenotype-based (pharmacome) analysis.


Assuntos
Receptores Adrenérgicos alfa 1 , Animais , Humanos , Camundongos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/fisiologia , Uretra/fisiologia , Bexiga Urinária/fisiologia
19.
Biochem Pharmacol ; 182: 114297, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33132165

RESUMO

PNU-120596 is a classical positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (α7 nAChR) and widely used to investigate the effect of α7 nAChR activation on several inflammation-associated diseases including rheumatoid arthritis, inflammatory bowel disease and cerebral ischemia. In this study, we report that PNU-120596 directly inhibits p38 mitogen-activated protein kinase (MAPK) activity. In 293A cells, p38 MAPK phosphorylation by several factors (oxidative stress, osmotic stress, TNF-α, or muscarinic stimulation) was inhibited by PNU-120596 as well as p38 MAPK inhibitor BIRB-796. Inhibition of p38 MAPK phosphorylation by PNU-120596 was not affected by α7 nAChR antagonist, methyllycaconitine (MLA). In vitro kinase assay revealed that PNU-120596 directly inhibits p38α MAPK-induced activating transcription factor 2 (ATF2) phosphorylation. MKK6-induced phosphorylation of p38α MAPK was also inhibited by PNU-120596. Real-time monitoring of binding to p38α MAPK using fluoroprobe SKF-86002 showed quite rapid binding of PNU-120596 compared to BIRB-796 which is known as a slow binder. Finally, we showed that PNU-120596 suppressed LPS-induced phosphorylation of p38 MAPK and expression of inflammatory factors including TNF-α, IL-6 and COX-2, independent on α7 nAChR activity in microglial cell BV-2. Thus, PNU-120596 might exert an anti-inflammatory effect through not only α7 nAChR potentiation but also direct inhibition of p38 MAPK.


Assuntos
Isoxazóis/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Relação Dose-Resposta a Droga , Humanos , Isoxazóis/química , Células MCF-7 , Camundongos , Compostos de Fenilureia/química , Inibidores de Proteínas Quinases/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Life Sci ; 84(5-6): 181-7, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19087880

RESUMO

AIMS: This study evaluates ocular (iris, ciliary body and ciliary process) and nonocular (atria and lung) beta-adrenoceptors in rabbit to characterize the plasma membrane beta-adrenoceptors and binding affinities of beta-adrenoceptor antagonists. MAIN METHODS: The tissue segment binding method with a hydrophilic radioligand (-)-4-[3-t-butylamino-2-hydroxypropoxy]-[5,7-(3)H]benzimidazol-2-one ([(3)H]-CGP12177) was employed. KEY FINDINGS: Specific and saturable binding of [(3)H]-CGP12177 to intact tissue segments was detected by using (+/-)-propranolol to define nonspecific binding, showing a single population of plasma membrane binding sites with high affinity. Competition experiments with selective beta(1)- and beta(2)-adrenoceptor antagonists revealed a single population of beta(2)-adrenoceptors in ocular tissues and of beta(1)-adrenoceptors in atria, but mixed populations of beta(1)- and beta(2)-adrenoceptors in 70% and 30%, respectively, in lung. A competition curve for timolol was biphasic in lung and its binding affinity for beta(2)-adrenoceptors was approximately 158-fold higher than for beta(1)-adrenoceptors, indicating the beta(2)-selectivity of timolol. In contrast, competition curves for stereoisomers of befunolol, carteolol, and propranolol were monophasic in all tissues. The (-)-enantiomers of these antagonists were more potent than corresponding (+)-enantiomers in displacing from [(3)H]-CGP12177 binding, and the isomeric potency ratios of befunolol and carteolol were less than those of propranolol. SIGNIFICANCE: This study with tissue segment binding method suggests that the binding affinity of (-)-enantiomers of beta-adrenoceptor antagonists for plasma membrane beta-adrenoceptors (beta(1)-adrenoceptors of atria, beta(2)-adrenoceptors of ocular tissues, and mixed beta(1)-/beta(2)-adrenoceptors of lung) is higher than that of corresponding (+)-enantiomers and their stereoselectivity is different between beta-adrenoceptor antagonists.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Olho/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/química , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Olho/citologia , Olho/metabolismo , Coração/efeitos dos fármacos , Técnicas In Vitro , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Miocárdio/citologia , Miocárdio/metabolismo , Ligação Proteica , Coelhos , Ensaio Radioligante , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA