RESUMO
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub.
Assuntos
Ecossistema , Incêndios , Densidade Demográfica , Animais , Florida , Variação Genética , Genética Populacional , Lagartos/genética , Repetições de MicrossatélitesRESUMO
Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences.
Assuntos
Incêndios , Variação Genética , Genética Populacional , Lagartos/genética , Animais , Ecossistema , FloridaRESUMO
Hybridization can be an important evolutionary force by generating new species and influencing evolution of parental species in multiple ways, including introgression and the consequences of hybrid vigor. Determining the ecological processes underlying evolution in hybrid zones is difficult however because it requires examining changes in both genotypic frequencies over time and corresponding ecological information, data that are rarely collected together. Here, we describe genetic and ecological aspects of a hybrid zone between the Eastern Fence Lizard, Sceloporus undulatus, and the Florida Scrub Lizard, Sceloporus woodi, occurring over at least 23 generations. The hybrid zone, discovered greater than 35 years ago using morphological characters, originally consisted of nearly even proportions of parental species and hybrids. Now, using genetic markers (species-diagnostic mtDNA sites and 6 nDNA microsatellite loci across a total of n = 117 individuals), we confirm not only that hybridization occurred but also that subsequent backcrossing has resulted in highly introgressed hybrids, with many hybrids containing mitochondrial DNA from one species on a nuclear DNA background of the other. Ecological aspects explaining these shifts in genetic composition include female mate choice, changes in habitat associated with secondary succession, and, most strongly, a hierarchy of male territorial advantage-ecological mechanisms likely to be involved in the emergence and disappearance of many animal hybrid zones. Our results suggest that genetic assimilation is not a significant threat to either species and that rather transient hybrid zones such as this may serve to increase genetic diversity and are candidates for causing genetic discordance in phylogeographic analyses.
Assuntos
Agressão , Evolução Molecular , Hibridização Genética , Lagartos/genética , Preferência de Acasalamento Animal , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Ecossistema , Feminino , Frequência do Gene , Loci Gênicos , Marcadores Genéticos , Variação Genética , Genótipo , Lagartos/classificação , Masculino , Repetições de Microssatélites , Filogeografia , Especificidade da EspécieRESUMO
Fire is a complex event that maintains many ecological systems. The Florida Sand Skink (Plestiodon reynoldsi) is precinctive to Florida Scrub, a habitat that is maintained by infrequent fire. We characterize the effect of fire on genetic diversity and genetic differentiation at eight microsatellite loci in the Florida Sand Skink (n=470) collected from 30 replicate sites over three 'time since last fire' categories at the Archbold Biological Station. Long unburned sites had greater allelic richness and expected heterozygosity than either recently or intermediately burned sites. More recently, burned sites had greater standard deviations of allelic richness and private allelic richness. Expected heterozygosity positively correlated with 'time since fire' (r=0.36, P=0.05) and abundance (r=0.53, P=0.002). There was a significant spatial component to genetic differentiation, and results indicate individuals rarely disperse >1 km. Genetic differentiation was positively correlated with geographic distance in long unburned units (r=0.59, P=0.04), yet this relationship was disrupted by fire in recently (r=0.00, 1) and intermediately (r= -0.81, 0.05) burned areas. Simulations indicate that demographic changes to a local population could have generated the observed differences among 'time since fire' categories. Our findings indicate that infrequent fire may be beneficial to the Florida Sand Skink and that local populations begin to recover from changes attributable to the fire after 10 years. Too frequent fires may reduce genetic diversity because it may take multiple generations for local populations to recover.
Assuntos
Incêndios , Variação Genética/genética , Lagartos/genética , Animais , Lagartos/classificação , Repetições de Microssatélites/genéticaRESUMO
The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.
Assuntos
Ecossistema , Incêndios , Variação Genética , Genética Populacional , Lagartos/genética , Animais , Demografia , Florida , Frequência do Gene , Repetições de Microssatélites/genética , Modelos Genéticos , Especificidade da EspécieRESUMO
1. We investigated agonistic behaviour and associated characteristics of Sceloporus woodi (Florida scrub lizard), Sceloporus undulatus (Eastern fence lizard) and their hybrids using staged territorial encounters. 2. These Sceloporus hybrids exhibit transgressive aggression and transgressive head-girth relative to the parental species and the transgressive aggression was specifically associated with an advantage in agonistic encounters. Our results suggest a hybrid advantage in natural habitats when defending and invading territories against either parental species. 3. We further analysed general advantages in agonistic encounters across the entire three-group system to elucidate characteristics that may be advantageous under specific circumstances. Individuals with larger body size (SVL) and greater aggression had an overall advantage in agonistic encounters; however, smaller individuals could win when slightly more aggressive and fatter, and less aggressive individuals could win when slightly larger, especially with greater head-girth. 4. The extreme hybrid phenotypes likely occurred through transgressive segregation, which has been implicated as a process through which homoploid, hybrid speciation can occur. Some form of ecological divergence is necessary, however, to impede parental gene flow. Our data suggest that ecological divergence could manifest in territorial species through transgressive aggression.
Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Hibridização Genética , Lagartos/genética , Lagartos/fisiologia , Animais , Feminino , Masculino , Especificidade da EspécieRESUMO
Minimum patch size for a viable population can be estimated in several ways. The density-area method estimates minimum patch size as the smallest area in which no new individuals are encountered as one extends the arbitrary boundaries of a study area outward. The density-area method eliminates the assumption of no variation in density with size of habitat area that accompanies other methods, but it is untested in situations in which habitat loss has confined populations to small areas. We used a variant of the density area method to study the minimum patch size for the gopher tortoise (Gopherus polyphemus) in Florida, USA, where this keystone species is being confined to ever smaller habitat fragments. The variant was based on the premise that individuals within populations are likely to occur at unusually high densities when confined to small areas, and it estimated minimum patch size as the smallest area beyond which density plateaus. The data for our study came from detailed surveys of 38 populations of the tortoise. For all 38 populations, the areas occupied were determined empirically, and for 19 of them, duplicate surveys were undertaken about a decade apart. We found that a consistent inverse density area relationship was present over smaller areas. The minimum patch size estimated from the density-area relationship was at least 100 ha, which is substantially larger than previous estimates. The relative abundance of juveniles was inversely related to population density for sites with relatively poor habitat quality, indicating that the estimated minimum patch size could represent an extinction threshold. We concluded that a negative density area relationship may be an inevitable consequence of excessive habitat loss. We also concluded that any detrimental effects of an inverse density area relationship may be exacerbated by the deterioration in habitat quality that often accompanies habitat loss. Finally, we concluded that the value of any estimate of minimum patch size as a conservation tool is compromised by excessive habitat loss.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Tartarugas/crescimento & desenvolvimento , Animais , Demografia , Feminino , Florida , Masculino , Densidade Demográfica , Dinâmica Populacional , Tartarugas/fisiologiaRESUMO
1. Wetlands are ecologically and economically important ecosystems but are threatened globally by many forms of human disturbance. Understanding the responses of wetland species to human disturbance is essential for effective wetland management and conservation. 2. We undertook a study to determine (i) whether anurans can be used effectively to assess the ecological integrity of wetlands affected by groundwater withdrawal and, if so, (ii) what effect increasing urbanization might have on the utility of anurans as wetland indicators. We monitored the intensity of anuran calls at 42 wetlands in south-western Florida throughout 2001-2002 and 2005-2009. 3. We first validated the use of anurans to assess wetland integrity using a small group of wetlands by comparing anuran calling and subsequent tadpole development with an established index employing vegetation composition and structure. We then verified that the results could be expanded to a variety of sites throughout the region. Finally, we focused on urbanized wetlands to determine whether urbanization could interfere with the use of anurans to assess wetland integrity. 4. We used PRESENCE to estimate occupancy and detection probabilities and to examine the relationship between occupancy and five covariates expected to influence individual species occurrence. We used FRAGSTATS to calculate the mean proximity index for urbanized wetlands, which assesses the size and distribution of land use types within a specified area. 5. Our results showed that the group of species including oak toad Anaxyrus quercicus, southern cricket frog Acris gryllus, pinewoods treefrog Hyla femoralis, barking treefrog Hyla gratiosa, and little grass frog Pseudacris ocularis is a reliable indicator of wetland integrity. However, this same group of species, which is sensitive to wetland health, is selectively excluded from urbanized wetlands. 6. Synthesis and applications. Although anurans are effective indicators of wetland health and complement vegetation surveys, the usefulness of this group for monitoring the ecological integrity of wetlands can be substantially reduced, or eliminated, as a consequence of urbanization. We urge for careful consideration of confounding factors in any studies examining the utility of indicator species.
RESUMO
Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus) exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old), and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.
RESUMO
Little is known about the reproductive behaviors and the actual outcomes of mating attempts in the gopher tortoise (Gopherus polyphemus). We examined the mating system and reproductive behaviors of a population of gopher tortoises in central Florida. Using microsatellite markers, we assigned fathers to the offspring of seven clutches and determined that multiple fathers were present in two of the seven clutches examined. We found that gopher tortoises exhibited a promiscuous mating system with larger males fertilizing the majority of clutches. The advantage of larger males over smaller males in fertilizing females may be a result of larger males winning access to females in aggressive bouts with other males or larger males may be more attractive to females. Clutches produced by larger females tended to be sired by a single male, whereas clutches of smaller females tended to be sired by multiple males.