RESUMO
Smart sensing devices enabled hydroponics, a concept of vertical farming that involves soilless technology that increases green area. Although the cultivation medium is water, hydroponic cultivation uses 13 ± 10 times less water and gives 10 ± 5 times better quality products compared with those obtained through the substrate cultivation medium. The use of smart sensing devices helps in continuous real-time monitoring of the nutrient requirements and the environmental conditions required by the crop selected for cultivation. This, in turn, helps in enhanced year-round agricultural production. In this study, lettuce, a leafy crop, is cultivated with the Nutrient Film Technique (NFT) setup of hydroponics, and the growth results are compared with cultivation in a substrate medium. The leaf growth was analyzed in terms of cultivation cycle, leaf length, leaf perimeter, and leaf count in both cultivation methods, where hydroponics outperformed substrate cultivation. The results of the 'AquaCrop simulator also showed similar results, not only qualitatively and quantitatively, but also in terms of sustainable growth and year-round production. The energy consumption of both the cultivation methods is compared, and it is found that hydroponics consumes 70 ± 11 times more energy compared to substrate cultivation. Finally, it is concluded that smart sensing devices form the backbone of precision agriculture, thereby multiplying crop yield by real-time monitoring of the agronomical variables.
Assuntos
Conservação de Recursos Energéticos , Lactuca , Hidroponia , Fenômenos Físicos , ÁguaRESUMO
This study proposes a new hybrid multi-modal sensory feedback system for prosthetic hands that can provide not only haptic and proprioceptive feedback but also facilitate object recognition without the aid of vision. Modality-matched haptic perception was provided using a mechanotactile feedback system that can proportionally apply the gripping force through the use of a force controller. A vibrotactile feedback system was also employed to distinguish four discrete grip positions of the prosthetic hand. The system performance was evaluated with a total of 32 participants in three different experiments (i) haptic feedback, (ii) proprioceptive feedback and (iii) object recognition with hybrid haptic-proprioceptive feedback. The results from the haptic feedback experiment showed that the participants' ability to accurately perceive applied force depended on the amount of force applied. As the feedback force was increased, the participants tended to underestimate the force levels, with a decrease in the percentage of force estimation. Of the three arm locations (forearm volar, forearm ventral and bicep), and two muscle states (relaxed and tensed) tested, the highest accuracy was obtained for the bicep location in the relaxed state. The results from the proprioceptive feedback experiment showed that participants could very accurately identify four different grip positions of the hand prosthesis (i.e., open hand, wide grip, narrow grip, and closed hand) without a single case of misidentification. In experiment 3, participants could identify objects with different shapes and stiffness with an overall high success rate of 90.5% across all combinations of location and muscle state. The feedback location and muscle state did not have a significant effect on object recognition accuracy. Overall, our study results indicate that the hybrid feedback system may be a very effective way to enrich a prosthetic hand user's experience of the stiffness and shape of commonly manipulated objects.
Assuntos
Retroalimentação Sensorial , Tecnologia Háptica , Humanos , Retroalimentação Sensorial/fisiologia , Retroalimentação , Próteses e Implantes , Mãos/fisiologia , Músculo Esquelético , Percepção Visual , Força da Mão/fisiologiaRESUMO
Sensory feedback is critical in proprioception and balance to orchestrate muscles to perform targeted motion(s). Biofeedback plays a significant role in substituting such sensory data when sensory functions of an individual are reduced or lost such as neurological disorders including stroke causing loss of sensory and motor functions requires compensation of both motor and sensory functions. Biofeedback substitution can be in the form of several means: mechanical, electrical, chemical and/or combination. This study proposes a soft monolithic haptic biofeedback device prototyped and pilot tests were conducted with healthy participants that balance and proprioception of the wearer were improved with applied mechanical stimuli on the lower limb(s). The soft monolithic haptic biofeedback device has been developed and manufactured using fused deposition modelling (FDM) that employs soft and flexible materials with low elastic moduli. Experimental results of the pilot tests show that the soft haptic device can effectively improve the balance of the wearer as much as can provide substitute proprioceptive feedback which are critical elements in robotic rehabilitation.
Assuntos
Tecnologia Háptica , Propriocepção , Biorretroalimentação Psicológica/métodos , Humanos , Projetos Piloto , Equilíbrio Postural/fisiologiaRESUMO
Haptics plays a significant role not only in the rehabilitation of neurological disorders, such as stroke, by substituting necessary cognitive information but also in human-computer interfaces (HCIs), which are now an integral part of the recently launched metaverse. This study proposes a unique, soft, monolithic haptic feedback device (SoHapS) that was directly manufactured using a low-cost and open-source fused deposition modeling (FDM) 3D printer by employing a combination of soft conductive and nonconductive thermoplastic polyurethane (TPU) materials (NinjaTek, USA). SoHapS consists of a soft bellow actuator and a soft resistive force sensor, which are optimized using finite element modeling (FEM). SoHapS was characterized both mechanically and electrically to assess its performance, and a dynamic model was developed to predict its force output with given pressure inputs. We demonstrated the efficacy of SoHapS in substituting biofeedback with tactile feedback, such as gripping force, and proprioceptive feedback, such as finger flexion-extension positions, in the context of teleoperation. With its intrinsic properties, SoHapS can be integrated into rehabilitation robots and robotic prostheses, as well as augmented, virtual, and mixed reality (AR/VR/MR) systems, to induce various types of bio-mimicked feedback.
RESUMO
A single universal robotic gripper with the capacity to fulfill a wide variety of gripping and grasping tasks has always been desirable. A three-dimensional (3D) printed modular soft gripper with highly conformal soft fingers that are composed of positive pressure soft pneumatic actuators along with a mechanical metamaterial was developed. The fingers of the soft gripper along with the mechanical metamaterial, which integrates a soft auxetic structure and compliant ribs, was 3D printed in a single step, without requiring support material and postprocessing, using a low-cost and open-source fused deposition modeling (FDM) 3D printer that employs a commercially available thermoplastic poly (urethane) (TPU). The soft fingers of the gripper were optimized using finite element modeling (FEM). The FE simulations accurately predicted the behavior and performance of the fingers in terms of deformation and tip force. Also, FEM was used to predict the contact behavior of the mechanical metamaterial to prove that it highly decreases the contact pressure by increasing the contact area between the soft fingers and the grasped objects and thus proving its effectiveness in enhancing the grasping performance of the gripper. The contact pressure can be decreased by up to 8.5 times with the implementation of the mechanical metamaterial. The configuration of the highly conformal gripper can be easily modulated by changing the number of fingers attached to its base to tailor it for specific manipulation tasks. Two-dimensional (2D) and 3D grasping experiments were conducted to assess the grasping performance of the soft modular gripper and to prove that the inclusion of the metamaterial increases its conformability and reduces the out-of-plane deformations of the soft monolithic fingers upon grasping different objects and consequently, resulting in the gripper in three different configurations including two, three and four-finger configurations successfully grasping a wide variety of objects.
RESUMO
Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.
RESUMO
Soft robotic hands with monolithic structure have shown great potential to be used as prostheses due to their advantages to yield light weight and compact designs as well as its ease of manufacture. However, existing soft prosthetic hands design were often not geared towards addressing some of the practical requirements highlighted in prosthetics research. The gap between the existing designs and the practical requirements significantly hampers the potential to transfer these designs to real-world applications. This work addressed these requirements with the consideration of the trade-off between practicality and performance. These requirements were achieved through exploiting the monolithic 3D printing of soft materials which incorporates membrane enclosed flexure joints in the finger designs, synergy-based thumb motion and cable-driven actuation system in the proposed hand prosthesis. Our systematic design (tentatively named X-Limb) achieves a weight of 253gr, three grasps types (with capability of individual finger movement), power-grip force of 21.5N, finger flexion speed of 1.3sec, a minimum grasping cycles of 45,000 (while maintaining its original functionality) and a bill of material cost of 200 USD (excluding quick disconnect wrist but without factoring in the cost reduction through mass production). A standard Activities Measure for Upper-Limb Amputees benchmark test was carried out to evaluate the capability of X-Limb in performing grasping task required for activities of daily living. The results show that all the practical design requirements are satisfied, and the proposed soft prosthetic hand is able to perform all the real-world grasping tasks of the benchmark tests, showing great potential in improving life quality of individuals with upper limb loss.
Assuntos
Membros Artificiais , Impressão Tridimensional , Robótica , Amputados , Fenômenos Biomecânicos , Dedos/cirurgia , Força da Mão , Humanos , Articulações/fisiologia , Masculino , Movimento , Polegar/fisiologia , Torção MecânicaRESUMO
Electrotactile stimulation is a highly promising technique for providing sensory feedback information for prosthetics. To this aim, disposable electrodes which are predominantly used result in a high environmental and financial cost when used over a long period of time. In addition, disposable electrodes are limited in their size and configurations. This paper presents an alternative approach based on a 3D printed reusable flexible concentric electrode coated with a conductive graphene ink. Here, we have characterized the electrode and demonstrated its effective performance in electrotactile stimulation and sensory feedback for robotic prosthetic hands.
RESUMO
In this article, we have established an analytical model to estimate the quasi-static bending displacement (i.e., angle) of the pneumatic actuators made of two different elastomeric silicones (Elastosil M4601 with a bulk modulus of elasticity of 262 kPa and Translucent Soft silicone with a bulk modulus of elasticity of 48 kPa-both experimentally determined) and of discrete chambers, partially separated from each other with a gap in between the chambers to increase the magnitude of their bending angle. The numerical bending angle results from the proposed gray-box model, and the corresponding experimental results match well that the model is accurate enough to predict the bending behavior of this class of pneumatic soft actuators. Further, by using the experimental bending angle results and blocking force results, the effective modulus of elasticity of the actuators is estimated from a blocking force model. The numerical and experimental results presented show that the bending angle and blocking force models are valid for this class of pneumatic actuators. Another contribution of this study is to incorporate a bistable flexible thin metal typified by a tape measure into the topology of the actuators to prevent the deflection of the actuators under their own weight when operating in the vertical plane.