Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pflugers Arch ; 476(3): 283-293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044359

RESUMO

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.


Assuntos
Resistência à Insulina , Doenças Mitocondriais , Animais , Dieta Hiperlipídica , Músculo Esquelético/metabolismo , Modelos Animais , Doenças Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
2.
Pharmacol Res ; 196: 106918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703962

RESUMO

There is an increasing interest in the use of nutraceuticals and plant-derived bioactive compounds from foods for their potential health benefits. For example, as a major active ingredient found from cruciferous vegetables like broccoli, there has been growing interest in understanding the therapeutic effects of sulforaphane against diverse metabolic complications. The past decade has seen an extensive growth in literature reporting on the potential health benefits of sulforaphane to neutralize pathological consequences of oxidative stress and inflammation, which may be essential in protecting against diabetes-related complications. In fact, preclinical evidence summarized within this review supports an active role of sulforaphane in activating nuclear factor erythroid 2-related factor 2 or effectively modulating AMP-activated protein kinase to protect against diabetic complications, including diabetic cardiomyopathy, diabetic neuropathy, diabetic nephropathy, as well as other metabolic complications involving non-alcoholic fatty liver disease and skeletal muscle insulin resistance. With clinical evidence suggesting that foods rich in sulforaphane like broccoli can improve the metabolic status and lower cardiovascular disease risk by reducing biomarkers of oxidative stress and inflammation in patients with type 2 diabetes. This information remains essential in determining the therapeutic value of sulforaphane or its potential use as a nutraceutical to manage diabetes and its related complications. Finally, this review discusses essential information on the bioavailability profile of sulforaphane, while also covering information on the pathological consequences of oxidative stress and inflammation that drive the development and progression of diabetes.

3.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764216

RESUMO

Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.


Assuntos
Doenças Cardiovasculares , Café , Humanos , Doenças Cardiovasculares/prevenção & controle , Estresse Oxidativo , Antioxidantes , Biomarcadores , Inflamação
4.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764345

RESUMO

The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.

5.
Pharmacol Res ; 178: 106163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257898

RESUMO

Chronic inflammation remains an essential complication in the pathogenesis and aggravation of metabolic diseases. There is a growing interest in the use of medicinal plants or food-derived bioactive compounds for their antioxidant and anti-inflammatory properties to improve metabolic function. For example, rutin, a flavonol derivative of quercetin that is found in several medicinal plants and food sources has displayed therapeutic benefits against diverse metabolic diseases. Here, we searched the major electronic databases and search engines such as PubMed/MEDLINE, Scopus and Google Scholar to systematically extract and critically discuss evidence reporting on the impact of rutin against metabolic diseases by affecting inflammation. In fact, available preclinical evidence suggests that rutin, through its strong antioxidant properties, can effectively ameliorate inflammation by reducing the levels of pro-inflammatory markers such as tumor necrosis factor-α, interleukin (IL)-6, cyclooxygenase-2, IL-1ß, as well as blocking nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) activation to improve metabolic function. Notably, although clinical data on the impact of rutin on inflammation is limited, food-derived sources rich in this flavonol such as Fagopyrum tataricum, Coffea arabica and Aspalathus linearis (rooibos) have shown promise in improving metabolic function, in part by reducing markers of oxidative stress and inflammation. However, additional studies are still required to confirm the therapeutic properties of rutin in a clinical setting, including the enhancement of it low bioavailability profile.


Assuntos
Antioxidantes , Rutina , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Rutina/farmacologia , Rutina/uso terapêutico
6.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684734

RESUMO

Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspalathus linearis) and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.75 mM) for 16 hrs. These insulin-resistant liver cells were treated with orientin (10 µM) for 3 h to assess the therapeutic effect of orientin. In addition to assessing the rate of metabolic activity, end point measurements assessed include the uptake or utilization of glucose and palmitate, as well as the expression of genes involved in insulin signaling and regulating cellular energy homeostasis. Our results showed that orientin effectively improved metabolic activity, mainly by maintaining substrate utilization which was marked by enhanced glucose and palmitate uptake by liver cells subjected to insulin resistance. Interestingly, these effects can be explained by the improvement in the expression of genes involved in glucose transport (Glut2), insulin signaling (Irs1 and Pi3k), and energy regulation (Ampk and Cpt1). These preliminary findings lay an important foundation for future research to determine the bioactive properties of orientin against dyslipidemia or insulin resistance in reliable and well-established models of type 2 diabetes.


Assuntos
Flavonoides/farmacologia , Glucosídeos/farmacologia , Insulina/genética , Aspalathus/química , Linhagem Celular , Chalconas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucosídeos/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
7.
Front Med (Lausanne) ; 11: 1295217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566923

RESUMO

The introduction of antiretroviral therapy (ART) has significantly prolonged the lifespan of people living with human immunodeficiency virus (PLWH). However, the sustained use of this drug regimen has also been associated with a cluster of metabolic anomalies, including renal toxicity, which can lead to the development of kidney diseases. In this study, we reviewed studies examining kidney disease in PLWH sourced from electronic databases such as PubMed/MEDLINE, Scopus, and Google Scholar, as well as gray literature. The narrative synthesis of data from these clinical studies demonstrated that the serum levels of cystatin C remained unchanged or were not affected in PLWH on ART, while the creatinine-based glomerular filtration rate (GFR) fluctuated. In fact, some of the included studies showed that the creatinine-based GFR was increased in PLWH taking tenofovir disoproxil fumarate-containing ART, perhaps indicating that the use of both cystatin C- and creatinine-based GFRs is vital to monitor the development of kidney disease in PLWH. Clinical data summarized within this study indicate the potential detrimental effects of tenofovir-based ART regimens in causing renal tubular injury, while highlighting the possible beneficial effects of dolutegravir-based ART on improving the kidney function in PLWH. However, the summarized literature remains limited, while further clinical studies are required to provide insights into the potential use of cystatin C as a biomarker for kidney disease in PLWH.

9.
Vaccines (Basel) ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140186

RESUMO

BACKGROUND: We have previously determined that the occurrence of missed vaccination opportunities in children in Cape Town, South Africa, is shaped by both individual and contextual factors. These factors present valuable openings for enhancing quality and implementing broader strategies to enhance the delivery of routine Immunisation services. METHODS: Here, we are further reporting regional-level data on the coverage and factors influencing vaccination completion within a similar study population, based on extensive data analysis from the 2016 South African Demographic and Health Survey. RESULTS AND DISCUSSION: The study reveals commendable vaccination coverage for most vaccines within recommended schedules, with high rates of initial vaccinations at birth and during the primary vaccination schedule. However, there are notable areas for improvement, particularly in ensuring complete coverage for the second measles vaccine and the 18-month vaccine. Socio-demographic factors also play a role, with maternal education and caregiver awareness campaigns showing the potential to positively influence vaccination completeness. This study emphasises the importance of timely vaccinations during the early months of life and underscores the need for interventions to maintain coverage as children age. Specific sub-districts, such as Tygerberg, may require targeted efforts to enhance vaccination completeness. Additionally, assessing caregiver knowledge about child vaccination is deemed vital, as it can impact vaccination decisions and adherence. CONCLUSIONS: The findings provide valuable insights for public health interventions in Cape Town, aimed at reducing the burden of vaccine-preventable diseases and ensuring the health of the region's youngest population.

10.
Life Sci ; 332: 122125, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769808

RESUMO

Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.

11.
Front Pharmacol ; 13: 940572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899107

RESUMO

Moringa oleifera is one of the popular plants that have shown significant health benefits. Certainly, preclinical evidence (predominantly from animal models) summarized in the current review supports the beneficial effects of Moringa oleifera leaf extracts in combating the prominent characteristic features of diabetes mellitus. This includes effective control of blood glucose or insulin levels, enhancement of insulin tissue sensitivity, improvement of blood lipid profiles, and protecting against organ damage under sustained conditions of hyperglycemia. Interestingly, as major complications implicated in the progression of diabetes, including organ damage, Moringa oleifera leaf and seed extracts could efficiently block the detrimental effects of oxidative stress and inflammation in these preclinical models. Notably, these extracts (especially leaf extracts) showed enhanced effects in strengthening intracellular antioxidant defences like catalase, superoxide dismutase, and glutathione to lower lipid peroxidation products and reduce prominent pro-inflammatory markers such as tumor necrosis factor-α, interleukin (1L)-ß, IL-6, monocyte chemoattractant protein-1 and nitric oxide synthase. From animal models of diabetes, the common and effective dose of leaf extracts of Moringa oleifera was 100-300 mg/kg, within the treatment duration of 2-8 weeks. Whereas supplementation with approximately 20 g leaf powder of Moringa oleifera for at least 2 weeks could improve postprandial blood glucose in subjects with prediabetes or diabetes. Although limited clinical studies have been conducted on the antidiabetic properties of Moringa oleifera, current findings provide an important platform for future research directed at developing this plant as a functional food to manage diabetic complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA