Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(41): 94097-94111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37525080

RESUMO

Due to the water and energy crises, wastewater treatment systems that are more energy efficient and capable of large volume degradation are a priority. Photochemical decomposition methods have a significant impact on pollutant treatment. The use of these methods in conjunction with a novel designed reactor and hybridization processes can result in considerable treatment results. This research used a fountain system in a UV/H2O2 process to generate a belt-type liquid film with a low thickness and high mixing to remove methyl orange as a model pollutant. The flow rate, H2O2 concentration, temperature, and UV intensity were the parameters evaluated in this series of tests. After 90 minutes under optimum conditions, the maximum degradation of methyl orange was 99.73 percent. The efficiency of the purification process was increased to 99 percent in 75 minutes by using the optimum state of hybridization of UV/US/H2O2 processes. Two deep neural network models and a pseudo-first-order kinetic model were created to fit the experimental data. The results reveal a good fit between the experimental data and the model prediction. The discovered synergistic factor (1.168) and energy yield (2.65 g/kWh) demonstrated the high efficiency of the hybridization process and the outstanding function of the designed system, respectively.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio/química , Raios Ultravioleta , Compostos Azo , Oxirredução , Poluentes Químicos da Água/química , Cinética
2.
Environ Sci Pollut Res Int ; 29(44): 66888-66901, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35513622

RESUMO

There is an increasing demand for the development of inexpensive and effective approaches for the oil-water separation due to the global concern in oil industries. The present study was conducted to fabricate graphitic carbon nitride/thermoplastic polyurethane (g-C3N4/TPU)-coated stainless steel meshes via the dip-coating method to investigate the capability of g-C3N4 nanosheets (CN-NS) in oil-water separation. CN-NS was synthesized using the polycondensation process followed by exfoliation with Hummer's method. We studied the effect of TPU and CN-NS concentration on wettability behavior to obtain an optimized coating solution. CN-NS-coated mesh showed superoleophilic/hydrophobic behavior at CN-NS:TPU ratio of 50:50, and it efficiently passed oil from the emulsified water-in-oil mixture (with 50 wt.% oil) with the efficiency of 99%. The wettability behavior of superhydrophilic/underwater superoleophobic was also obtained at CN-NS:TPU ratio of 80:20, and it was able to separate water from the emulsified water-in-oil mixture with the efficiency of 79% under gravity. Both filters were able to separate free water and oil mixtures with flux and efficiency of 6114 L.m-2.h-1 and ~ 99.99%, respectively. The mechanism of wettability behavior of the coating is mainly related to the functional groups on the edge of g-C3N4-NS, thus increasing the hydrophilic properties of the surface. In addition, the micro-nano hierarchical structure of the surface coating improves its roughness due to the presence of CN-NS, which is effectively embedded into the hydrophilic TPU. More importantly, commercially available TPU chemical and simple fabrication of g-C3N4 from an inexpensive precursor make the method reported herein as a significant alternative for large-scale application.

3.
Sci Rep ; 12(1): 14457, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002558

RESUMO

In this paper, three passive methods for the generation of swirl flow in the supersonic separator (3S) were investigated, and their structures were optimized by computational fluid dynamics (CFD) modeling. The influence of the structural and operational parameters on the dew point depression, phase envelope diagram, rate of natural gas liquid (NGL) recovery, and separation efficiency have also been evaluated. The collection efficiency was significantly improved for the nozzle equipped with the passive swirler compared with the simple nozzle. The selection of passive swirler type played a crucial role in the natural gas liquefaction and separation. The side injected swirler, and serpentine swirler showed the most significant improvement in separation efficiency than the U-turn swirler. For the side injected swirler at the optimum injection angle, the maximum collection efficiency was about 89% at the pressure loss ratio (PLR) of 0.2. Besides, the simulation results demonstrated that for the serpentine 3S, with the increase in serpentine twist number, the highest improvement on the collection efficiency of the investigated nozzle was obtained. In addition, it was observed that, when the convergent section profile was designed according to the Witoszynski line-type, a larger refrigeration zone was obtained than other considered profiles.


Assuntos
Hidrodinâmica , Gás Natural , Simulação por Computador
4.
Sci Rep ; 12(1): 22398, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575276

RESUMO

The natural gas liquid recovery is an important process in a gas plant to correct hydrocarbon dew point and earn profit. In this study, a natural gas liquid recovery unit operated based on the Joule-Thomson process was investigated and its performance was optimized. To improve the system performance, the plant configuration and intermediate pressure ratio were defined as the variables and maximization of the natural gas liquid recovery rate and maximization of exergy efficiency were defined as the objective functions. To improve the plant performance, the amount of natural gas liquid recovery rate should be increased. To achieve this goal, several scenarios for the intermediate pressure ratio and three new configurations were proposed for the investigated gas plant. In the proposed configurations, the supersonic separators with optimized structures were used instead of the Joule-Thomson process. It was observed that all three proposed configurations improved the natural gas liquid recovery rate compared to the existing configuration. For example, by installing two supersonic separators instead of second and third stage Joule-Thomson valve + low temperature separator, at the optimal operating condition, the natural gas liquid recovery rate increased about 390%. The influence of the intermediate pressure ratio on the phase envelope diagram, exergy efficiency, dew point depression and natural gas liquid recovery rate was also investigated. By comparing the influence of intermediate pressure ratio and modifying the plant configuration on the objective functions, it was observed that the system performance can be further improved by modifying the plant configuration.


Assuntos
Gás Natural
5.
Sci Rep ; 11(1): 21850, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750448

RESUMO

In this study, the effects of several structural and operational parameters affecting the separation efficiency of supersonic separators were investigated by numerical methods. Different turbulence models were used and their accuracies were evaluated. Based on the error analysis, the V2-f turbulence model was more accurate for describing the high swirling turbulent flow than other investigated turbulence models. Therefore, the V2-f turbulence model and particle tracing model were selected to optimize the structure of the convergence part, the diffuser, the drainage port, and the swirler. The cooling performance of three line-type in the convergent section were calculated. The simulation results demonstrated that the convergent section designed by the Witoszynski curve had higher cooling depth compared to the Bi-cubic and Quintic curves. Furthermore, the expansion angle of 2° resulted in the highest stability of fluid flow and therefore was selected in the design of the diffuser. The effect of incorporating the swirler and its structure on the separation performance of supersonic separator was also studied. Three different swirler types, including axial, wall-mounted, and helical, were investigated. It was observed that installing the swirler significantly improved the separation efficiency of the supersonic separator. In addition, the simulation results demonstrated that the separation efficiency was higher for the axial swirler compared to the wall-mounted and helical swirlers. Therefore, for the improved nozzle, the swirling flow was generated by the axial swirler. The optimized axial swirler was constructed from 12 arced vanes each of which had a swirl angle of 40°. For the optimized structure, the effects of operating parameters such as inlet temperature, pressure recovery ratio, density, and droplet size was also investigated. It was concluded that increasing the droplet size and density significantly improved the separation efficiency of the supersonic separator. For hydrocarbon droplets, the separation efficiency improved from 4.6 to 76.7% upon increasing the droplet size from 0.1 to 2 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA