Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(17): e2307955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148312

RESUMO

Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1), with a detection limit of 10 µg mL-1. Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.


Assuntos
Oxigênio , Polímeros , Oxigênio/metabolismo , Humanos , Polímeros/química , Microambiente Tumoral , Linhagem Celular Tumoral , Animais , Rutênio/química , Camundongos , Técnicas Biossensoriais/métodos , Espaço Intracelular/metabolismo
2.
Micromachines (Basel) ; 15(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38398898

RESUMO

This study explores the potential of laser-induced nano-photon-poration as a non-invasive technique for the intracellular delivery of micro/macromolecules at the single-cell level. This research proposes the utilization of gold-coated spiky polymeric nanoparticles (Au-PNPs) and gold nanorods (GNRs) to achieve efficient intracellular micro/macromolecule delivery at the single-cell level. By shifting the operating wavelength towards the near-infrared (NIR) range, the intracellular delivery efficiency and viability of Au-PNP-mediated photon-poration are compared to those using GNR-mediated intracellular delivery. Employing Au-PNPs as mediators in conjunction with nanosecond-pulsed lasers, a highly efficient intracellular delivery, while preserving high cell viability, is demonstrated. Laser pulses directed at Au-PNPs generate over a hundred hot spots per particle through plasmon resonance, facilitating the formation of photothermal vapor nanobubbles (PVNBs). These PVNBs create transient pores, enabling the gentle transfer of cargo from the extracellular to the intracellular milieu, without inducing deleterious effects in the cells. The optimization of wavelengths in the NIR region, coupled with low laser fluence (27 mJ/cm2) and nanoparticle concentrations (34 µg/mL), achieves outstanding delivery efficiencies (96%) and maintains high cell viability (up to 99%) across the various cell types, including cancer and neuronal cells. Importantly, sustained high cell viability (90-95%) is observed even 48 h post laser exposure. This innovative development holds considerable promise for diverse applications, encompassing drug delivery, gene therapy, and regenerative medicine. This study underscores the efficiency and versatility of the proposed technique, positioning it as a valuable tool for advancing intracellular delivery strategies in biomedical applications.

3.
ACS Appl Bio Mater ; 5(8): 3576-3607, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35839513

RESUMO

The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.


Assuntos
Inteligência Artificial , Dispositivos Lab-On-A-Chip , Humanos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA