Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290848

RESUMO

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Assuntos
Córtex Motor , Núcleo Subtalâmico , Masculino , Feminino , Animais , Haplorrinos , Núcleo Subtalâmico/fisiologia , Gânglios da Base , Córtex Motor/fisiologia , Neurônios/fisiologia
2.
Neurobiol Dis ; 190: 106362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992783

RESUMO

The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.


Assuntos
Globo Pálido , Núcleo Subtalâmico , Globo Pálido/metabolismo , Corpo Estriado , Gânglios da Base/fisiologia , Neurônios/metabolismo , Vias Neurais/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397806

RESUMO

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1-ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4-Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22-MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1-ADAM22-MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


Assuntos
Proteínas ADAM/genética , Epilepsia/genética , Guanilato Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Epilepsia/patologia , Epilepsia/prevenção & controle , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Moléculas de Adesão de Célula Nervosa/genética , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Superfamília Shaker de Canais de Potássio/genética
4.
Mov Disord ; 38(12): 2145-2150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986211

RESUMO

Schematic illustration of cortically induced dynamic activity changes of the output nuclei of the basal ganglia (the internal segment of the globus pallidus, GPi and the substantia nigra pars reticulata, SNr) in the healthy and diseased states. The height of the dam along the time course controls the expression of voluntary movements. Its alterations could cause a variety of movement disorders, such as Parkinson's disease and hyperkinetic disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Doença de Parkinson , Humanos , Gânglios da Base , Globo Pálido , Substância Negra
5.
J Neurosci ; 41(25): 5502-5510, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34001630

RESUMO

The substantia nigra pars reticulata (SNr) is the output station of the basal ganglia and receives cortical inputs by way of the following three basal ganglia pathways: the cortico-subthalamo (STN)-SNr hyperdirect, the cortico-striato-SNr direct, and the cortico-striato-external pallido-STN-SNr indirect pathways. Compared with the classical direct and indirect pathways via the striatum, the functions of the hyperdirect pathway remain to be fully elucidated. Here we used a photodynamic technique to selectively eliminate the cortico-STN projection in male mice and observed neuronal activity and motor behaviors in awake conditions. After cortico-STN elimination, cortically evoked early excitation in the SNr was diminished, while the cortically evoked inhibition and late excitation, which are delivered through the direct and indirect pathways, respectively, were unchanged. In addition, locomotor activity was significantly increased after bilateral cortico-STN elimination, and apomorphine-induced ipsilateral rotations were observed after unilateral cortico-STN elimination, suggesting that cortical activity was increased. These results are compatible with the notion that the cortico-STN-SNr hyperdirect pathway quickly conveys cortical excitation to the output station of the basal ganglia, resets or suppresses the cortical activity related to ongoing movements, and prepares for the forthcoming movement.SIGNIFICANCE STATEMENT The basal ganglia play a pivotal role in the control of voluntary movements, and their malfunctions lead to movement disorders, such as Parkinson's disease and dystonia. Understanding their functions is important to find better treatments for such diseases. Here we used a photodynamic technique to selectively eliminate the projection from the motor cortex to the subthalamic nucleus, the input station of the basal ganglia, and found greatly reduced early excitatory signals from the cortex to the output station of the basal ganglia and motor hyperactivity. These results suggest that the neuronal signals through the cortico-subthalamic hyperdirect pathway reset or suppress ongoing movements and that blockade of this pathway may be beneficial for Parkinson's disease, which is characterized by oversuppression of movements.


Assuntos
Hipercinese/fisiopatologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 41(12): 2668-2683, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33563724

RESUMO

l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.


Assuntos
Gânglios da Base/fisiopatologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/toxicidade , Transmissão Sináptica/fisiologia , Animais , Gânglios da Base/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Transmissão Sináptica/efeitos dos fármacos
7.
Cereb Cortex ; 31(12): 5363-5380, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34268560

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by dopamine deficiency. To elucidate network-level changes through the cortico-basal ganglia pathways in PD, we recorded neuronal activity in PD monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We applied electrical stimulation to the motor cortices and examined responses in the internal (GPi) and external (GPe) segments of the globus pallidus, the output and relay nuclei of the basal ganglia, respectively. In the normal state, cortical stimulation induced a triphasic response composed of early excitation, inhibition, and late excitation in the GPi and GPe. In the PD state, cortically evoked inhibition in the GPi mediated by the cortico-striato-GPi "direct" pathway was largely diminished, whereas late excitation in the GPe mediated by the cortico-striato-GPe-subthalamo (STN)-GPe pathway was elongated. l-DOPA treatment ameliorated PD signs, particularly akinesia/bradykinesia, and normalized cortically evoked responses in both the GPi and GPe. STN blockade by muscimol injection ameliorated the motor deficit and unmasked cortically evoked inhibition in the GPi. These results suggest that information flow through the direct pathway responsible for the initiation of movements is largely reduced in PD and fails to release movements, resulting in akinesia/bradykinesia. Restoration of the information flow through the direct pathway recovers execution of voluntary movements.


Assuntos
Doença de Parkinson , Gânglios da Base , Globo Pálido/fisiologia , Humanos , Levodopa/farmacologia , Vias Neurais/fisiologia
8.
Proc Natl Acad Sci U S A ; 116(45): 22844-22850, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636197

RESUMO

Optogenetics is now a fundamental tool for investigating the relationship between neuronal activity and behavior. However, its application to the investigation of motor control systems in nonhuman primates is rather limited, because optogenetic stimulation of cortical neurons in nonhuman primates has failed to induce or modulate any hand/arm movements. Here, we used a tetracycline-inducible gene expression system carrying CaMKII promoter and the gene encoding a Channelrhodopsin-2 variant with fast kinetics in the common marmoset, a small New World monkey. In an awake state, forelimb movements could be induced when Channelrhodopsin-2-expressing neurons in the motor cortex were illuminated by blue laser light with a spot diameter of 1 mm or 2 mm through a cranial window without cortical invasion. Forelimb muscles responded 10 ms to 50 ms after photostimulation onset. Long-duration (500 ms) photostimulation induced discrete forelimb movements that could be markerlessly tracked with charge-coupled device cameras and a deep learning algorithm. Long-duration photostimulation mapping revealed that the primary motor cortex is divided into multiple domains that can induce hand and elbow movements in different directions. During performance of a forelimb movement task, movement trajectories were modulated by weak photostimulation, which did not induce visible forelimb movements at rest, around the onset of task-relevant movement. The modulation was biased toward the movement direction induced by the strong photostimulation. Combined with calcium imaging, all-optical interrogation of motor circuits should be possible in behaving marmosets.


Assuntos
Callithrix/fisiologia , Membro Anterior/fisiologia , Córtex Motor/fisiologia , Movimento , Optogenética , Animais , Eletromiografia , Luz
9.
J Neurosci ; 40(39): 7451-7463, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32847963

RESUMO

The subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia. Thus, clarifying how STN neuronal activity is controlled by the two inputs is crucial. Cortical stimulation evokes early excitation and late excitation in STN neurons, intervened by a short gap. Here, to examine the origin of each component of this biphasic response, we recorded neuronal activity in the STN, combined with electrical stimulation of the motor cortices and local drug application in two male monkeys (Macaca fuscata) in the awake state. Local application of glutamate receptor antagonists, a mixture of an AMPA/kainate receptor antagonist and an NMDA receptor antagonist, into the vicinity of recorded STN neurons specifically diminished early excitation. Blockade of the striatum (putamen) or GPe with local injection of a GABAA receptor agonist, muscimol, diminished late excitation in the STN. Blockade of striato-GPe transmission with local injection of a GABAA receptor antagonist, gabazine, into the GPe also abolished late excitation. These results indicate that cortically evoked early and late excitation in the STN is mediated by the cortico-STN glutamatergic hyperdirect and the cortico-striato-GPe-STN indirect pathways, respectively.SIGNIFICANCE STATEMENT Here we show that the subthalamic nucleus (STN), an input station of the basal ganglia, receives cortical inputs through the cortico-STN hyperdirect and cortico-striato-external pallido-STN indirect pathways. This knowledge is important for understanding not only the normal functions of the STN, but also the pathophysiology of STN-related disorders and therapy targeting the STN. Lesions or application of high-frequency stimulation in the STN ameliorates parkinsonian symptoms. These procedures could affect all components in the STN, such as afferent inputs through the hyperdirect and indirect pathways, and STN neuronal activity. If we can understand which component is most affected by such procedures, we may be able to identify more effective manipulation targets or methods to treat Parkinson's disease.


Assuntos
Potenciais Evocados , Córtex Motor/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Macaca fuscata , Masculino , Córtex Motor/efeitos dos fármacos , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Putamen/efeitos dos fármacos , Putamen/fisiologia , Piridazinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Núcleo Subtalâmico/efeitos dos fármacos
10.
Eur J Neurosci ; 53(7): 2178-2191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32649021

RESUMO

The basal ganglia play a crucial role in the control of voluntary movements. Neurons in both the external and internal segments of the globus pallidus, the connecting and output nuclei of the basal ganglia, respectively, change their firing rates in relation to movements. Firing rate changes of movement-related neurons seem to convey signals for motor control. On the other hand, coincident spikes among neurons, that is, correlated activity, may also contribute to motor control. To address this issue, we first identified multiple pallidal neurons receiving inputs from the forelimb regions of the primary motor cortex and supplementary motor area, recorded neuronal activity of these neurons simultaneously, and analyzed their spike correlations while monkeys performed a hand-reaching task. Most (79%) pallidal neurons exhibited task-related firing rate changes, whereas only a small fraction (20%) showed significant but small and short correlated activity during the task performance. These results suggest that motor control signals are conveyed primarily by firing rate changes in the external and internal segments of the globus pallidus and that the contribution of correlated activity may play only a minor role in the healthy state.


Assuntos
Globo Pálido , Neurônios , Animais , Gânglios da Base , Haplorrinos , Movimento
11.
Glia ; 68(11): 2330-2344, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32445516

RESUMO

Dystonin (Dst) is a causative gene for Dystonia musculorum (dt) mice, which is an inherited disorder exhibiting dystonia-like movement and ataxia with sensory degeneration. Dst is expressed in a variety of tissues, including the central nervous system and the peripheral nervous system (PNS), muscles, and skin. However, the Dst-expressing cell type(s) for dt phenotypes have not been well characterized. To address the questions whether the disruption of Dst in Schwann cells induces movement disorders and how much impact does it have on dt phenotypes, we generated Dst conditional knockout (cKO) mice using P0-Cre transgenic mice and Dst gene trap mice. First, we assessed the P0-Cre transgene-dependent Cre recombination using tdTomato reporter mice and then confirmed the preferential tdTomato expression in Schwann cells. In the Dst cKO mice, Dst mRNA expression was significantly decreased in Schwann cells, but it was intact in most of the sensory neurons in the dorsal root ganglion. Next, we analyzed the phenotype of Dst cKO mice. They exhibited a normal motor phenotype during juvenile periods, and thereafter, started exhibiting an ataxia. Behavioral tests and electrophysiological analyses demonstrated impaired motor abilities and slowed motor nerve conduction velocity in Dst cKO mice, but these mice did not manifest dystonic movements. Electron microscopic observation of the PNS of Dst cKO mice revealed significant numbers of hypomyelinated axons and numerous infiltrating macrophages engulfing myelin debris. These results indicate that Dst is important for normal PNS myelin organization and Dst disruption in Schwann cells induces late-onset neuropathy and sensory ataxia. MAIN POINTS: Dystonin (Dst) disruption in Schwann cells results in late-onset neuropathy and sensory ataxia. Dst in Schwann cells is important for normal myelin organization in the peripheral nervous system.


Assuntos
Ataxia , Distonia , Animais , Ataxia/genética , Distúrbios Distônicos , Distonina , Camundongos , Camundongos Transgênicos , Células de Schwann
12.
Lab Invest ; 99(2): 210-230, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30413814

RESUMO

In order to understand the pathobiology of neurotrophic keratopathy, we established a mouse model by coagulating the first branch of the trigeminal nerve (V1 nerve). In our model, the sensory nerve in the central cornea disappeared and remaining fibers were sparse in the peripheral limbal region. Impaired corneal epithelial healing in the mouse model was associated with suppression of both cell proliferation and expression of stem cell markers in peripheral/limbal epithelium as well as a reduction of transient receptor potential vanilloid 4 (TRPV4) expression in tissue. TRPV4 gene knockout also suppressed epithelial repair in mouse cornea, although it did not seem to directly modulate migration of epithelium. In a co-culture experiment, TRPV4-introduced KO trigeminal ganglion upregulated nerve growth factor (NGF) in cultured corneal epithelial cells, but ganglion with a control vector did not. TRPV4 gene introduction into a damaged V1 nerve rescues the impairment of epithelial healing in association with partial recovery of the stem/progenitor cell markers and upregulation of cell proliferation and of NGF expression in the peripheral/limbal epithelium. Gene transfer of TRPV4 did not accelerate the regeneration of nerve fibers. Sensory nerve TRPV4 is critical to maintain stemness of peripheral/limbal basal cells, and is one of the major mechanisms of homeostasis maintenance of corneal epithelium.


Assuntos
Epitélio Corneano , Células-Tronco , Canais de Cátion TRPV/metabolismo , Nervo Trigêmeo/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Epitélio Corneano/citologia , Epitélio Corneano/lesões , Epitélio Corneano/metabolismo , Técnicas de Inativação de Genes , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo , Canais de Cátion TRPV/genética , Nervo Trigêmeo/química
13.
Eur J Neurosci ; 49(6): 754-767, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-28833676

RESUMO

Theories and models of the basal ganglia have mainly focused on the role of three different corticothalamic pathways: direct, indirect and hyperdirect. Although the indirect and the hyperdirect pathways are linked through the bidirectional connections between the subthalamic nucleus (STN) and the external globus pallidus (GPe), the role of their interactions has been mainly discussed in the context of a dysfunction (abnormal oscillations in Parkinson's disease) and not of its function. We here propose a novel role for the loop formed by the STN and the GPe. We show, through a neuro-computational model, that this loop can bias the selection of actions during the exploratory period after a change in the environmental conditions towards alternative responses. Testing well-known alternative solutions before completely random actions can reduce the time required for the search of a new response after a rule change. Our simulations further show that the knowledge acquired by the indirect pathway can be transferred into a stable memory via learning in the hyperdirect pathway to establish the blocking of unwanted responses. After a rule switch, first the indirect pathway learns to inhibit the previously correct actions. Once the new correct association is learned, the inhibition is transferred to the hyperdirect pathway through synaptic plasticity.


Assuntos
Tomada de Decisões/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Núcleo Subtalâmico/fisiologia , Globo Pálido/fisiologia , Aprendizagem/fisiologia , Vias Neurais/fisiologia , Doença de Parkinson/fisiopatologia , Transmissão Sináptica/fisiologia
14.
Mov Disord ; 34(2): 200-209, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30161282

RESUMO

BACKGROUND: Parkinson's disease is caused by dopamine deficiency in the striatum, which is a result of loss of dopamine neurons from the substantia nigra pars compacta. There is a consensus that a subpopulation of nigral dopamine neurons that expresses the calcium-binding protein calbindin is selectively invulnerable to parkinsonian insults. The objective of the present study was to test the hypothesis that dopamine neuron degeneration might be prevented by viral vector-mediated gene delivery of calbindin into the dopamine neurons that do not normally contain it. METHODS: A calbindin-expressing adenoviral vector was injected into the striatum of macaque monkeys to be conveyed to cell bodies of nigral dopamine neurons through retrograde axonal transport, or the calbindin-expressing lentiviral vector was injected into the nigra directly because of its predominant uptake from cell bodies and dendrites. The animals in which calbindin was successfully recruited into nigral dopamine neurons were administered systemically with MPTP. RESULTS: In the monkeys that had received unilateral vector injections, parkinsonian motor deficits, such as muscular rigidity and akinesia/bradykinesia, appeared predominantly in the limbs corresponding to the non-calbindin-recruited hemisphere after MPTP administration. Data obtained from tyrosine hydroxylase immunostaining and PET imaging for the dopamine transporter revealed that the nigrostriatal dopamine system was preserved better on the calbindin-recruited side. Conversely, on the non-calbindin-recruited control side, many more dopamine neurons expressed α-synuclein. CONCLUSIONS: The present results indicate that calbindin recruitment into nigral dopamine neurons protects against the onset of parkinsonian insults, thus providing a novel approach to PD prevention. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Calbindinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Feminino , Intoxicação por MPTP/patologia , Macaca fascicularis , Masculino , Neostriado/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/prevenção & controle , Doença de Parkinson Secundária , Substância Negra/patologia
15.
Glia ; 66(11): 2514-2525, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240035

RESUMO

Oligodendrocytes myelinate neuronal axons to increase conduction velocity in the vertebrate central nervous system (CNS). Recent studies revealed that myelin formed on highly active axons is more stable compared to activity-silenced axons, and length of the myelin sheath is longer in active axons as well in the zebrafish larva. However, it is unclear whether oligodendrocytes preferentially myelinate active axons compared to sensory input-deprived axons in the adult mammalian CNS. It is also unknown if a single oligodendrocyte forms both longer myelin sheaths on active axons and shorter sheaths on input-deprived axons after long-term sensory deprivation. To address these questions, we applied simultaneous labeling of both neuronal axons and oligodendrocytes to mouse models of long-term monocular eyelid suturing and unilateral whisker removal. We found that individual oligodendrocytes evenly myelinated normal and input-deprived axons in the adult mouse CNS, and myelin sheath length on normal axons and input-deprived axons formed by a single oligodendrocyte were comparable. Importantly, the average length of the myelin sheath formed by individual oligodendrocytes did change depending on relative abundance of normal against sensory-input deprived axons, indicating an abundance of deprived axons near an oligodendrocyte impacts on myelination program by a single oligodendrocyte.


Assuntos
Sistema Nervoso Central/citologia , Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Quiasma Óptico/metabolismo , Privação Sensorial/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Corpo Caloso/metabolismo , Olho/inervação , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Vibrissas/inervação
16.
Cereb Cortex ; 27(12): 5716-5726, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028940

RESUMO

To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information.


Assuntos
Gânglios da Base/fisiologia , Células Piramidais/fisiologia , Córtex Sensório-Motor/fisiologia , Potenciais de Ação , Animais , Gânglios da Base/citologia , Mapeamento Encefálico , Estimulação Elétrica , Feminino , Masculino , Camundongos Transgênicos , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Estimulação Luminosa , Células Piramidais/citologia , Córtex Sensório-Motor/citologia , Processamento de Sinais Assistido por Computador
17.
J Comput Assist Tomogr ; 42(1): 33-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28708718

RESUMO

OBJECTIVE: The purpose of this study was to test the hypothesis that apical opacities on computed tomography (CT) are related to occurrence of primary spontaneous pneumothorax (PSP) in young male patients. METHODS: We compared the frequency of apical opacities on thin-section CT between 70 male patients with PSP (PSP group) and 74 male patients without a history of PSP (non-PSP group). We also evaluated histopathologic findings of 39 specimens from 37 surgical cases in the PSP group. RESULTS: Apical opacities were significantly more frequent in the PSP group than in the non-PSP group (right side, P = 0.01; left side, P = 0.005). Histopathologically, subpleural band-like alveolar collapse was seen in 35 specimens (89.7%), which was always accompanied by fibroelastosis and fibroblastic foci. CONCLUSIONS: Apical opacities on CT were significantly associated with PSP in young male patients. These apical opacities histopathologically correspond to fibrotic pleural thickening with subpleural alveolar collapse.


Assuntos
Pneumotórax/diagnóstico por imagem , Pneumotórax/patologia , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Tubos Torácicos , Criança , Tratamento Conservador , Humanos , Masculino , Pneumotórax/terapia , Interpretação de Imagem Radiográfica Assistida por Computador , Cirurgia Torácica Vídeoassistida
18.
Glia ; 65(1): 93-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27759175

RESUMO

Oligodendrocytes myelinate neuronal axons during development and increase conduction velocity of neuronal impulses in the central nervous system. Neuronal axons extend from multiple brain regions and pass through the white matter; however, whether oligodendrocytes ensheath a particular set of axons or do so randomly within the mammalian brain remains unclear. We developed a novel method to visualize individual oligodendrocytes and axon derived from a particular brain region in mouse white matter using a combinational injection of attenuated rabies virus and adeno-associated virus. Using this method, we found that some populations of oligodendrocytes in the corpus callosum predominantly ensheathed axons derived from motor cortex or sensory cortex, while others ensheathed axons from both brain regions, suggesting heterogeneity in preference of myelination toward a particular subtype of neurons. Moreover, our newly established method is a versatile tool for analyzing precise morphology of each oligodendrocyte in animal models for demyelinating disorders and addressing the role of oligodendrocyte in higher brain functions. GLIA 2016. GLIA 2017;65:93-105.


Assuntos
Axônios/virologia , Bainha de Mielina/virologia , Oligodendroglia/virologia , Vírus da Raiva/metabolismo , Animais , Feminino , Camundongos Endogâmicos C57BL , Transmissão Sináptica/fisiologia
19.
Eur J Neurosci ; 46(11): 2684-2701, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29044874

RESUMO

To understand how the information derived from different motor cortical areas representing different body parts is organized in the basal ganglia, we examined the neuronal responses in the subthalamic nucleus (STN), and the external (GPe) and internal (GPi) segments of the globus pallidus (input, relay and output nuclei, respectively) to stimulation of the orofacial, forelimb and hindlimb regions of the primary motor cortex (MI) and supplementary motor area (SMA) in macaque monkeys under the awake state. Most STN and GPe/GPi neurons responded exclusively to stimulation of either the MI or SMA, and one-fourth to one-third of neurons responded to both. STN neurons responding to the hindlimb, forelimb and orofacial regions of the MI were located along the medial-lateral axis in the posterolateral STN, while neurons responding to the orofacial region of the SMA were located more medially than the others in the anteromedial STN. GPe/GPi neurons responding to the hindlimb, forelimb and orofacial regions of the MI were found along the dorsal-ventral axis in the posterolateral GPe/GPi, and neurons responding to the corresponding regions of the SMA were similarly but less clearly distributed in more anteromedial regions. Moreover, neurons responding to the distal and proximal forelimb MI regions were found along the lateral-medial axis in the STN and the ventral-dorsal axis in the GPe/GPi. Most STN and GPe/GPi neurons showed kinaesthetic responses with similar somatotopic maps. These observations suggest that the somatotopically organized inputs from the MI and SMA are well preserved in the STN and GPe/GPi with partial convergence.


Assuntos
Globo Pálido/fisiologia , Córtex Motor/fisiologia , Núcleo Subtalâmico/fisiologia , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Eletrodos Implantados , Feminino , Macaca mulatta , Vias Neurais/fisiologia
20.
Chem Senses ; 42(1): 69-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940927

RESUMO

The sense of taste is achieved by cooperation of many signaling molecules expressed in taste cells, which code and transmit information on quality and intensity of taste to the nervous system. Viral vector-mediated gene transfer techniques have been proven to be useful to study and control function of a gene product in vivo However, there is no transduction method for taste cells in live animals. Here, we have established a method for inducing foreign gene expression in mouse taste cells in vivo by recombinant adeno-associated virus (AAV) vector. First, using enhanced green fluorescent protein (EGFP) as a reporter, we screened 6 AAV serotypes along with a recombinant lentivirus vector for their ability to transduce taste cells. One week after viral injection into the submucosa of the tongue, EGFP expression in fungiform taste cells was observed only in animals injected with AAV-DJ, a synthetic serotype. Next, time course of AAV-DJ-mediated EGFP expression in fungiform taste cells was evaluated. Intragemmal EGFP signals appeared after a delay, rapidly increased until 7 days postinjection, and gradually decreased over the next few weeks probably because of the cell turnover. Finally, the taste cell types susceptible to AAV-DJ transduction were characterized. EGFP expression was observed in PLCß2-immunoreactive type II and aromatic l-amino acid decarboxylase (AADC)-immunoreactive type III taste cells as well as in cells immunonegative for both PLCß2 and AADC, demonstrating that AAV-DJ does not discriminate functional taste cell types. In conclusion, the method established in this study will be a promising tool to study the mechanism of taste.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA