Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(12): 125705, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31770728

RESUMO

Two-dimensional materials such as hexagonal boron nitride (h-BN) and graphene have attracted wide attention in nanoelectronics and spintronics. Since their electronic characteristics are strongly affected by the local atomic structure, the heteroatom doping could allow us to tailor the electronic and physical properties of two-dimensional materials. In this study, a non-chemical method of heteroatom doping into h-BN under high-energy ion irradiation was demonstrated for the LiF/h-BN/Cu heterostructure. Spectroscopic analysis of chemical states on the relevant atoms revealed that 6% ± 2% fluorinated h-BN is obtained by the irradiation of 2.4 MeV Cu2+ ions with the fluence up to 1014 ions cm-2. It was shown that the high-energy ion irradiation leads to a single-sided fluorination of h-BN by the formation of the fluorinated sp 3-hybridized BN.

2.
J Phys Chem A ; 121(3): 680-689, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28075136

RESUMO

The structure of the interfaces and the mechanisms of induced spin polarization of 1D infinite and finite narrow graphene- and h-BN zigzag nanoribbons placed on a SrO-terminated La1-xSrxMnO3 (LSMO) (001) surface were studied using density functional theory (DFT) electronic structure calculations. It was found that the π-conjugated nanofragments are bonded to the LSMO(001) surface by weak disperse interactions. The types of coordination of the fragments, the strength of bonding, and the rate of spin polarization depend upon the nature of the fragments. Infinite and finite graphene narrow zigzag nanoribbons are characterized by the lift of the spin degeneracy and strong spin polarization caused by interface-induced structural asymmetry and oxygen-mediated indirect exchange interactions with Mn ions of LSMO support. Spin polarization changes the semiconducting nature of infinite graphene nanoribbons to half-metallic state with visible spin-up density of states at the Fermi level. The h-BN nanoribbon binding energy is weaker than graphene nanoribbon ones with noticeably shorter interlayer distance. The asymmetry effect and indirect exchange interactions cause spin polarization of h-BN nanoribbon as well with formation of embedded states inside the band gap. The results show a possibility to use one-atom thick nanofragments to design LSMO-based heterostructures for spintronic nanodevices with h-BN as an inert spacer to develop different potential barriers.

3.
J Nanosci Nanotechnol ; 12(12): 9136-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23447968

RESUMO

We report the creation of a functional nanostructure on a Si crystal surface by 200 keV C60(++) cluster ion bombardment (CIB). We found that the modified layer produced by CIB includes two sublayers with different nanostructures. The top 24-nm-thick sublayer is an agglomeration of 5-nm-sized amorphous Si nanodots (a-Si NDs). The deeper 10-nm-thick sublayer is a transient layer of disordered Si as an interface between the a-Si top sublayer and the bulk Si(100). The top a-Si sublayer and the nc-Si transient layer are formed by the local heating effect and shock wave effect, respectively, induced by the cluster ion impacts. The photoluminescence (PL) spectra of the CIB-modified Si samples revealed an emission line centered at a photon energy of 1.92 eV. The absorption spectra of the modified samples exhibit enhanced light absorption at this photon energy. The parameters of the PL line require ascribing the emission origin to the quantum-confinement-induced optical transitions in the a-Si nanodots. The core-shell structure of a-Si NDs is confirmed by detection of an additional PL line centered at 2.5 eV. Analysis of the Rutherford backscattering (RBS) and the PL spectra implies the existence of -Si--O- bonds in the nanodot outer shells, which are responsible for the additional PL line. The obtained results demonstrate the valuable potential of CIB for the controllable fabrication of Si surface nanostructures, which is attractive for optoelectronics and nanoelectronics. The obtained results elucidate the evolution of structure modification occurring in silicon due to the injection of energetic C60 cluster ions with an energy of hundreds of keV.

4.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35985318

RESUMO

Hydrogen concentrations in thin self-supporting samples of polyphenylene sulfide (PPS) and muscovite have been determined by nuclear-elastic recoil detection analysis (ERDA) of transmission layout. The analysis procedure is based only on the database of stopping power and recoil cross section for material analysis, without using any reference sample of known H content. For the PPS sample, the determined value of(2.87±0.26)×1022H cm-3is in good agreement with the calculated value of3.01×1022H cm-3. For the muscovite sample, the H concentration originating each from bound water and absorbed water is uniform over the entire thickness of the sample. The determined concentration(9.43±0.75)×1021H cm-3of the muscovite agrees excellently with the value of9.36×1021H cm-3obtained from other quantitative analyses typically applied for minerals. The present results demonstrate the capability of accurate determination of H contents in materials and minerals by transmission ERDA.

5.
J Phys Condens Matter ; 33(46)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34311445

RESUMO

Using stacked samples of Al foil and H-containing resin film, we have carried out elastic recoil detection analysis with transmission layout (T-ERDA) to investigate the depth resolution in the measurements of H distribution in Al. For narrow and wide acceptance conditions of the detector, the depth resolutions of 1.5-4.9µm at several depths in Al of 50 and 80µm thicknesses have been determined for incidence of 8 MeV4He. While the main factor to degrade the depth resolution is the energy straggling of recoil H for narrow acceptance conditions, it is the extended low-energy side of the H spectrum for wide acceptance conditions. The knowledge obtained in this work is useful for analysis of 3D images of H distribution measured by T-ERDA, for example, future analysis of minerals or natural glass samples to determine abundances and distributions of water or OH in the samples.

6.
J Nanosci Nanotechnol ; 10(4): 2624-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355474

RESUMO

Effect of deposition temperature (Ts) on structure of Co-C60 nanocomposite (NC) prepared by simultaneous deposition of cobalt and fullerene on sapphire is presented. The NC structure variations with Ts increasing from room temperature (RT) to 400 degrees C have been analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. AFM and SEM show granule-like structure of the Co-C60 film. The mixture film deposited at RT includes the hills on the surface suggesting accumulation of internal stress during phase separation. Raman spectra show 25 cm(-1) downshift of Ag(2) C60 peak suggesting -Co-C60- polymerization in C60-based matrix of the NC film. Analysis of Raman spectra has revealed existence of amorphous carbon (a-C) in the NC matrix that argues C60 decomposition. The Ts increase to 200 degrees C causes the surface hills smoothing. In parallel, downshift of the Ag(2) peak decreases to 16 cm(-1) that implies more pronounced phase separation and lower -Co-C60- polymerization efficiency. Also, amount of a-C content slightly increases. Further Ts increasing to 400 degrees C changes the NC structure dramatically. AFM shows evident enlargement of the granules. According to Raman spectra the high Ts deposition yields pronounced C60 decomposition increasing the a-C content. Features of a-C Raman peak imply nucleation of graphitic islands at the NC interfaces. Abundant decomposition of C60 in the mixture film deposited at 400 degrees C is referred to cobalt catalytic effect.

7.
Adv Mater ; 32(6): e1905734, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793057

RESUMO

Graphene-based vertical spin valves (SVs) are expected to offer a large magnetoresistance effect without impairing the electrical conductivity, which can pave the way for the next generation of high-speed and low-power-consumption storage and memory technologies. However, the graphene-based vertical SV has failed to prove its competence due to the lack of a graphene/ferromagnet heterostructure, which can provide highly efficient spin transport. Herein, the synthesis and spin-dependent electronic properties of a novel heterostructure consisting of single-layer graphene (SLG) and a half-metallic Co2 Fe(Ge0.5 Ga0.5 ) (CFGG) Heusler alloy ferromagnet are reported. The growth of high-quality SLG with complete coverage by ultrahigh-vacuum chemical vapor deposition on a magnetron-sputtered single-crystalline CFGG thin film is demonstrated. The quasi-free-standing nature of SLG and robust magnetism of CFGG at the SLG/CFGG interface are revealed through depth-resolved X-ray magnetic circular dichroism spectroscopy. Density functional theory (DFT) calculation results indicate that the inherent electronic properties of SLG and CFGG such as the linear Dirac band and half-metallic band structure are preserved in the vicinity of the interface. These exciting findings suggest that the SLG/CFGG heterostructure possesses distinctive advantages over other reported graphene/ferromagnet heterostructures, for realizing effective transport of highly spin-polarized electrons in graphene-based vertical SV and other advanced spintronic devices.

8.
J Nanosci Nanotechnol ; 9(7): 4305-10, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916447

RESUMO

The Co-C60 nano-composite film prepared by simultaneous deposition of Co and C60 at room temperature (RT) on sapphire with high content of cobalt (50 at.% Co) is recognized as ensemble of the fcc-Co crystals (5-6 nm in size) separated by the C60-based matrix. It is shown formation of internal stress in the composition arising due to the phase separation. The internal stress causes the phenomena sufficiently influencing structure of the nano-composite. One of them is locking the Co atoms within the C60-based matrix (retained Co atoms) occurring during the separation process. Analysis of the Raman spectrum argues that the retained Co atoms are included in the Co-C60 polymer dominating in the matrix of nano-composite. It is suggested importance of the internal stress for the polymer formation. Another phenomenon is the structural relaxation releasing the internal stress. These phenomena are tested through applying different thermal treatments. Raman spectrum of the mixture film deposited at 200 degrees C shows the lower polymerization efficiency in the C60-based matrix due to the more complete phase separation decreasing number of the retained Co atoms. Post-deposition annealing of the RT-deposited Co-C60 mixture film done at 300 degrees C for 1 hour induces the structural relaxation as conversion of fullerene into the regular carbon structure. According to the Raman analysis the regular carbon structure corresponds to the single-wall carbon nanotubes (SWNT) doped by cobalt. Similar analysis of the 200 degrees C-deposited mixture film treated by the following annealing reveals formation of SWNT only after much longer annealing. These experiments designate the Co diffusion as a main process driven by the carbon nanotube formation. The results demonstrate remarkable opportunity to control structure of the Co-C60 nano-composite using proper thermal treatments.

9.
Nanoscale ; 9(6): 2369-2375, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145546

RESUMO

We report the structural analysis and spin-dependent band structure of hydrogenated boron nitride adsorbed on Ni(111). The atomic displacement studied by using the normal incidence X-ray standing wave (NIXSW) technique supports the H-B(fcc):N(top) model, in which hydrogen atoms are site-selectively chemisorbed on boron atoms and N atoms remain on top of Ni atoms. The distance between the Ni plane and nitrogen plane did not change after hydrogenation, which implies that the interaction between Ni and N is 3d-π orbital mixing (donation and back-donation) even after hydrogenation of boron. The remaining π* peaks in near-edge X-ray absorption fine structure (NEXAFS) spectra are a manifestation of the rehybridization of sp2 into sp3 states, which is consistent with the N-B-N bonding angle derived from NIXSW measurement. The SPMDS measurement revealed the spin asymmetry appearing on hydrogenated h-BN, which was originated from a π related orbital with back donation from the Ni 3d state. Even though the atomic displacement is reproduced by the density functional theory (DFT) calculation with the H-B(fcc):N(top) model, the experimental spin-dependent band structure was not reproduced by DFT possibly due to the self-interaction error (SIE). These results reinforce the site-selective hydrogenation of boron and pave the way for efficient design of BN nanomaterials for hydrogen storage.

10.
ACS Nano ; 10(8): 7532-41, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27438899

RESUMO

The role of proximity contact with magnetic oxides is of particular interest from the expectations of the induced spin polarization and weak interactions at the graphene/magnetic oxide interfaces, which would allow us to achieve efficient spin-polarized injection in graphene-based spintronic devices. A combined approach of topmost-surface-sensitive spectroscopy utilizing spin-polarized metastable He atoms and ab initio calculations provides us direct evidence for the magnetic proximity effect in the junctions of single-layer graphene and half-metallic manganite La0.7Sr0.3MnO3 (LSMO). It is successfully demonstrated that in the graphene/LSMO junctions a sizable spin polarization is induced at the Fermi level of graphene in parallel to the spin polarization direction of LSMO without giving rise to a significant modification in the π band structure.

11.
J Phys Chem A ; 111(12): 2299-306, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17388319

RESUMO

The main features of the local atomic structure of novel Cox/C60 (x

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA