Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 78(5): 975-985.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320643

RESUMO

DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3'-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3'-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs.


Assuntos
Mapeamento Cromossômico/métodos , Replicação do DNA/genética , Análise de Sequência de DNA/métodos , Cromatina , DNA/genética , Quebras de DNA de Cadeia Simples , Dano ao DNA/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Genoma/genética , Humanos , Nucleotídeos , Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta Gen Subj ; 1862(10): 2152-2161, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025855

RESUMO

In the eukaryotic model yeast Saccharomyces cerevisiae, arsenic (As) detoxification is regulated by two transcriptional factors, Yap8 and Yap1. Yap8 specifically controls As extrusion from the cell, whether Yap1 avoids arsenic-induced oxidative damages. Accordingly, cells lacking both Yap1 and Yap8 are more sensitive to arsenate than cells lacking each regulator individually. Strikingly enough, the same sensitivity pattern was observed under anoxia, suggesting that Yap1 role in As detoxification might not be restricted to the regulation of the oxidative stress response. This finding prompted us to study the transcriptomic profile of wild-type and yap1 mutant cells exposed to arsenate. Interestingly, we found that, under such conditions, several genes involved in the biogenesis of FeS proteins were upregulated in a Yap1-dependent way. In line with this observation, arsenate treatment decreases the activity of the mitochondrial aconitase, Aco1, an FeS cluster-containing enzyme, this effect being even more pronounced in the yap1 mutant. Reinforcing the relevance of FeS cluster biogenesis in arsenate detoxification, the overexpression of several ISC and CIA machinery genes alleviates the deleterious effect of arsenate caused by the absence of Yap1 and Yap8. Altogether our data suggest that the upregulation of FeS biogenesis genes regulated by Yap1 might work as a cellular shield against arsenate toxicity.


Assuntos
Arseniatos/toxicidade , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Ferro-Enxofre/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Proteínas Ferro-Enxofre/efeitos dos fármacos , Proteínas Ferro-Enxofre/genética , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
3.
Biochim Biophys Acta ; 1833(5): 997-1005, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23295455

RESUMO

Arsenic is a double-edge sword. On the one hand it is powerful carcinogen and on the other it is used therapeutically to treat acute promyelocytic leukemia. Here we report that arsenic activates the iron responsive transcription factor, Aft1, as a consequence of a defective high-affinity iron uptake mediated by Fet3 and Ftr1, whose mRNAs are drastically decreased upon arsenic exposure. Moreover, arsenic causes the internalization and degradation of Fet3. Most importantly, fet3ftr1 mutant exhibits increased arsenic resistance and decreased arsenic accumulation over the wild-type suggesting that Fet3 plays a role in arsenic toxicity. Finally we provide data suggesting that arsenic also disrupts iron uptake in mammals and the link between Fet3, arsenic and iron, can be relevant to clinical applications.


Assuntos
Arseniatos , Ferro/metabolismo , Saccharomyces cerevisiae , Animais , Arseniatos/efeitos adversos , Arseniatos/metabolismo , Arseniatos/uso terapêutico , Ceruloplasmina/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Mamíferos , Proteínas de Membrana Transportadoras/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
4.
Microbiology (Reading) ; 158(Pt 9): 2293-2302, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22745270

RESUMO

Although arsenic is notoriously poisonous to life, its utilization in therapeutics brings many benefits to human health, so it is therefore essential to discover the molecular mechanisms underlying arsenic stress responses in eukaryotic cells. Aiming to determine the contribution of Ca(2+) signalling pathways to arsenic stress responses, we took advantage of the use of Saccharomyces cerevisiae as a model organism. Here we show that Ca(2+) enhances the tolerance of the wild-type and arsenic-sensitive yap1 strains to arsenic stress in a Crz1-dependent manner, thus providing the first evidence that Ca(2+) signalling cascades are involved in arsenic stress responses. Moreover, our results indicate that arsenic shock elicits a cytosolic Ca(2+) burst in these strains, without the addition of exogenous Ca(2+) sources, strongly supporting the notion that Ca(2+) homeostasis is disrupted by arsenic stress. In response to an arsenite-induced increase of Ca(2+) in the cytosol, Crz1 is dephosphorylated and translocated to the nucleus, and stimulates CDRE-driven expression of the lacZ reporter gene in a Cnb1-dependent manner. The activation of Crz1 by arsenite culminates in the induction of the endogenous genes PMR1, PMC1 and GSC2. Taken together, these data establish that activation of Ca(2+) signalling pathways and the downstream activation of the Crz1 transcription factor contribute to arsenic tolerance in the eukaryotic model organism S. cerevisiae.


Assuntos
Arsênio/toxicidade , Cálcio/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/biossíntese , Cátions Bivalentes/metabolismo , Perfilação da Expressão Gênica , Saccharomyces cerevisiae/genética , Ativação Transcricional
5.
Biochem J ; 414(2): 301-11, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18439143

RESUMO

In the budding yeast Saccharomyces cerevisiae, arsenic detoxification involves the activation of Yap8, a member of the Yap (yeast AP-1-like) family of transcription factors, which in turn regulates ACR2 and ACR3, genes encoding an arsenate reductase and a plasma-membrane arsenite-efflux protein respectively. In addition, Yap1 is involved in the arsenic adaptation process through regulation of the expression of the vacuolar pump encoded by YCF1 (yeast cadmium factor 1 gene) and also contributing to the regulation of ACR genes. Here we show that Yap1 is also involved in the removal of ROS (reactive oxygen species) generated by arsenic compounds. Data on lipid peroxidation and intracellular oxidation indicate that deletion of YAP1 and YAP8 triggers cellular oxidation mediated by inorganic arsenic. In spite of the increased amounts of As(III) absorbed by the yap8 mutant, the enhanced transcriptional activation of the antioxidant genes such as GSH1 (gamma- glutamylcysteine synthetase gene), SOD1 (superoxide dismutase 1 gene) and TRX2 (thioredoxin 2 gene) may prevent protein oxidation. In contrast, the yap1 mutant exhibits high contents of protein carbonyl groups and the GSSG/GSH ratio is severely disturbed on exposure to arsenic compounds in these cells. These results point to an additional level of Yap1 contribution to arsenic stress responses by preventing oxidative damage in cells exposed to these compounds. Transcriptional profiling revealed that genes of the functional categories related to sulphur and methionine metabolism and to the maintenance of cell redox homoeostasis are activated to mediate adaptation of the wild-type strain to 2 mM arsenate treatment.


Assuntos
Arsênio/farmacologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Northern Blotting , Western Blotting , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
FEBS Lett ; 581(2): 187-95, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17187783

RESUMO

Towards elucidating the function of Yap2, which remains unclear, we have taken advantage of the C-terminal homology between Yap1 and Yap2. Swapping domains experiments show that the Yap2 C-terminal domain functionally substitutes for the homologous Yap1 domain in the response to Cd, but not to H2O2. We conclude that specificity determinants of the Cd response are encoded within both Yap1 and Yap2 C-terminus, whereas those required for H2O2 response are only present in the Yap1 C-terminus. Furthermore, our results identify FRM2 as Cd-responsive Yap2 target and indicate a possible role of this protein in regulating a metal stress response.


Assuntos
Cádmio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cádmio/toxicidade , Cisteína/química , Cisteína/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Carioferinas/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Exportina 1
7.
Oxid Med Cell Longev ; 2012: 128647, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701145

RESUMO

Accumulation of iron (Fe) is often detected in the brains of people suffering from neurodegenerative diseases. High Fe concentrations have been consistently observed in Parkinson's, Alzheimer's, and Huntington's diseases; however, it is not clear whether this Fe contributes to the progression of these diseases. Other conditions, such as Friedreich's ataxia or neuroferritinopathy are associated with genetic factors that cause Fe misregulation. Consequently, excessive intracellular Fe increases oxidative stress, which leads to neuronal dysfunction and death. The characterization of the mechanisms involved in the misregulation of Fe in the brain is crucial to understand the pathology of the neurodegenerative disorders and develop new therapeutic strategies. Saccharomyces cerevisiae, as the best understood eukaryotic organism, has already begun to play a role in the neurological disorders; thus it could perhaps become a valuable tool also to study the metalloneurobiology.


Assuntos
Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Homeostase , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Oxid Med Cell Longev ; 2012: 132146, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701754

RESUMO

Alzheimer's (AD) and Parkinson's (PD) diseases are the two most common causes of dementia in aged population. Both are protein-misfolding diseases characterized by the presence of protein deposits in the brain. Despite growing evidence suggesting that oxidative stress is critical to neuronal death, its precise role in disease etiology and progression has not yet been fully understood. Budding yeast Saccharomyces cerevisiae shares conserved biological processes with all eukaryotic cells, including neurons. This fact together with the possibility of simple and quick genetic manipulation highlights this organism as a valuable tool to unravel complex and fundamental mechanisms underlying neurodegeneration. In this paper, we summarize the latest knowledge on the role of oxidative stress in neurodegenerative disorders, with emphasis on AD and PD. Additionally, we provide an overview of the work undertaken to study AD and PD in yeast, focusing the use of this model to understand the effect of oxidative stress in both diseases.


Assuntos
Doença de Alzheimer/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Modelos Biológicos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
PLoS One ; 6(1): e15976, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253609

RESUMO

Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.


Assuntos
Proteínas de Ligação a DNA/genética , Resposta ao Choque Térmico/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Clonagem Molecular , Quinase 3 da Glicogênio Sintase/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Fosforilação , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA