Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37632371

RESUMO

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Assuntos
Hipertensão , Patologia Clínica , Humanos , Ratos , Camundongos , Animais , Ratos Endogâmicos SHR , Rim , Modelos Animais de Doenças
2.
Lab Invest ; 100(3): 414-425, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31527829

RESUMO

Prostaglandin E2 receptor EP1 (PGE2/EP1) promotes diabetic renal injury, and EP1 receptor deletion improves hyperfiltration, albuminuria, and fibrosis. The role of EP1 receptors in hypertensive kidney disease (HKD) remains controversial. We examined the contribution of EP1 receptors to HKD. EP1 null (EP1-/-) mice were bred with hypertensive TTRhRen mice (Htn) to evaluate kidney function and injury at 24 weeks. EP1 deletion had no effect on elevation of systolic blood pressure in Htn mice (HtnEP1-/-) but resulted in pronounced albuminuria and reduced FITC-inulin clearance, compared with Htn or wild-type (WT) mice. Ultrastructural injury to podocytes and glomerular endothelium was prominent in HtnEP1-/- mice; including widened subendothelial space, subendothelial lucent zones and focal lifting of endothelium from basement membrane, with focal subendothelial cell debris. Cortex COX2 mRNA was increased by EP1 deletion. Glomerular EP3 mRNA was reduced by EP1 deletion, and EP4 by Htn and EP1 deletion. In WT mice, PGE2 increased chloride reabsorption via EP1 in isolated perfused thick ascending limb (TAL), but PGE2 or EP1 deletion did not affect vasopressin-mediated chloride reabsorption. In WT and Htn mouse inner medullary collecting duct (IMCD), PGE2 inhibited vasopressin-water transport, but not in EP1-/- or HtnEP1-/- mice. Overall, EP1 mediated TAL and IMCD transport in response to PGE2 is unaltered in Htn, and EP1 is protective in HKD.


Assuntos
Hipertensão Renal , Podócitos , Receptores de Prostaglandina E Subtipo EP1 , Animais , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Deleção de Genes , Taxa de Filtração Glomerular/genética , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Podócitos/citologia , Podócitos/metabolismo , Podócitos/patologia , Receptores de Prostaglandina E Subtipo EP1/genética , Receptores de Prostaglandina E Subtipo EP1/metabolismo
3.
Lab Invest ; 98(3): 360-370, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251736

RESUMO

PGE2 regulates glomerular hemodynamics, renin secretion, and tubular transport. This study examined the contribution of PGE2 EP1 receptors to sodium and water homeostasis. Male EP1-/- mice were bred with hypertensive TTRhRen mice (Htn) to evaluate blood pressure and kidney function at 8 weeks of age in four groups: wildtype (WT), EP1-/-, Htn, HtnEP1-/-. Blood pressure and water balance were unaffected by EP1 deletion. COX1 and mPGE2 synthase were increased and COX2 was decreased in mice lacking EP1, with increases in EP3 and reductions in EP2 and EP4 mRNA throughout the nephron. Microdissected proximal tubule sglt1, NHE3, and AQP1 were increased in HtnEP1-/-, but sglt2 was increased in EP1-/- mice. Thick ascending limb NKCC2 was reduced in the cortex but increased in the medulla. Inner medullary collecting duct (IMCD) AQP1 and ENaC were increased, but AVP V2 receptors and urea transporter-1 were reduced in all mice compared to WT. In WT and Htn mice, PGE2 inhibited AVP-water transport and increased calcium in the IMCD, and inhibited sodium transport in cortical collecting ducts, but not in EP1-/- or HtnEP1-/- mice. Amiloride (ENaC) and hydrochlorothiazide (pendrin inhibitor) equally attenuated the effect of PGE2 on sodium transport. Taken together, the data suggest that EP1 regulates renal aquaporins and sodium transporters, attenuates AVP-water transport and inhibits sodium transport in the mouse collecting duct, which is mediated by both ENaC and pendrin-dependent pathways.


Assuntos
Dinoprostona/metabolismo , Hipertensão/metabolismo , Túbulos Renais Coletores/metabolismo , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Sódio/metabolismo , Animais , Aquaporinas/metabolismo , Pressão Sanguínea , Cálcio/metabolismo , Taxa de Filtração Glomerular , Masculino , Camundongos , Prostaglandina-E Sintases/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
4.
Clin Sci (Lond) ; 132(13): 1453-1470, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29739827

RESUMO

Neuronal ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that maintains intracellular ubiquitin pools and promotes axonal transport. Uchl1 deletion in mice leads to progressive axonal degeneration, affecting the dorsal root ganglion that harbors axons emanating to the kidney. Innervation is a crucial regulator of renal hemodynamics, though the contribution of neuronal UCHL1 to this is unclear. Immunofluorescence revealed significant neuronal UCHL1 expression in mouse kidney, including periglomerular axons. Glomerular filtration rate trended higher in 6-week-old Uchl1-/- mice, and by 12 weeks of age, these displayed significant glomerular hyperfiltration, coincident with the onset of neurodegeneration. Angiotensin converting enzyme inhibition had no effect on glomerular filtration rate of Uchl1-/- mice indicating that the renin-angiotensin system does not contribute to the observed hyperfiltration. DCE-MRI revealed increased cortical renal blood flow in Uchl1-/- mice, suggesting that hyperfiltration results from afferent arteriole dilation. Nonetheless, hyperglycemia, cyclooxygenase-2, and nitric oxide synthases were ruled out as sources of hyperfiltration in Uchl1-/- mice as glomerular filtration rate remained unchanged following insulin treatment, and cyclooxygenase-2 and nitric oxide synthase inhibition. Finally, renal nerve dysfunction in Uchl1-/- mice is suggested given increased renal nerve arborization, decreased urinary norepinephrine, and impaired vascular reactivity. Uchl1-deleted mice demonstrate glomerular hyperfiltration associated with renal neuronal dysfunction, suggesting that neuronal UCHL1 plays a crucial role in regulating renal hemodynamics.


Assuntos
Taxa de Filtração Glomerular/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Ubiquitina Tiolesterase/fisiologia , Animais , Arteríolas/fisiopatologia , Ciclo-Oxigenase 2/metabolismo , Intolerância à Glucose/fisiopatologia , Rim/inervação , Rim/metabolismo , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Artéria Renal/fisiopatologia , Circulação Renal/fisiologia , Sistema Renina-Angiotensina/fisiologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/metabolismo , Resistência Vascular/fisiologia
5.
J Am Soc Nephrol ; 27(3): 666-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26319242

RESUMO

An important measure of cardiovascular health is obtained by evaluating the global cardiovascular risk, which comprises a number of factors, including hypertension and type 2 diabetes, the leading causes of illness and death in the world, as well as the metabolic syndrome. Altered immunity, inflammation, and oxidative stress underlie many of the changes associated with cardiovascular disease, diabetes, and the metabolic syndrome, and recent efforts have begun to elucidate the contribution of PGE2 in these events. This review summarizes the role of PGE2 in kidney disease outcomes that accelerate cardiovascular disease, highlights the role of cyclooxygenase-2/microsomal PGE synthase 1/PGE2 signaling in hypertension and diabetes, and outlines the contribution of PGE2 to other aspects of the metabolic syndrome, particularly abdominal adiposity, dyslipidemia, and atherogenesis. A clearer understanding of the role of PGE2 could lead to new avenues to improve therapeutic options and disease management strategies.


Assuntos
Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Hipertensão/metabolismo , Síndrome Metabólica/metabolismo , Insuficiência Renal Crônica/metabolismo , Gordura Abdominal , Aterosclerose/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dislipidemias/metabolismo , Humanos , Hipertensão/complicações , Oxirredutases Intramoleculares/metabolismo , Síndrome Metabólica/complicações , Prostaglandina-E Sintases , Insuficiência Renal Crônica/complicações , Transdução de Sinais
6.
Diabetologia ; 59(6): 1318-28, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26995650

RESUMO

AIMS/HYPOTHESIS: The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. METHODS: Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. RESULTS: Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. CONCLUSIONS/INTERPRETATION: Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.


Assuntos
Rim/metabolismo , Poliúria/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Prostaglandina E/metabolismo , Estreptozocina/toxicidade , Água/metabolismo , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Arginina Vasopressina/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP3/genética
7.
Lab Invest ; 95(9): 1044-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26121313

RESUMO

Renal prostaglandin (PG) E2 regulates salt and water transport, and affects disease processes via EP1-4 receptors, but its role in the proximal tubule (PT) is unknown. Our study investigates the effects of PGE2 on mouse PT fluid reabsorption, and its role in growth, sodium transporter expression, fibrosis, and oxidative stress in a mouse PT cell line (MCT). To determine which PGE2 EP receptors are expressed in MCT, qPCR for EP1-4 was performed on cells stimulated for 24 h with PGE2 or transforming growth factor beta (TGFß), a known mediator of PT injury in kidney disease. EP1 and EP4 were detected in MCT, but EP2 and EP3 are not expressed. EP1 was increased by PGE2 and TGFß, but EP4 was unchanged. To confirm the involvement of EP1 and EP4, sulprostone (SLP, EP1/3 agonist), ONO8711 (EP1 antagonist), and EP1 and EP4 siRNA were used. We first show that PGE2, SLP, and TGFß reduced H(3)-thymidine and H(3)-leucine incorporation. The effects on cell-cycle regulators were examined by western blot. PGE2 increased p27 via EP1 and EP4, but TGFß increased p21; PGE2-induced p27 was attenuated by TGFß. PGE2 and SLP reduced cyclinE, while TGFß increased cyclinD1, an effect attenuated by PGE2 administration. Na-K-ATPase α1 (NaK) was increased by PGE2 via EP1 and EP4. TGFß had no effect on NaK. Additionally, PGE2 and TGFß increased fibronectin levels, reaching 12-fold upon co-stimulation. EP1 siRNA abrogated PGE2-fibronectin. PGE2 also increased ROS generation, and ONO-8711 blocked PGE2-ROS. Finally, PGE2 significantly increased fluid reabsorption by 31 and 46% in isolated perfused mouse PT from C57BL/6 and FVB mice, respectively, and this was attenuated in FVB-EP1 null mice. Altogether PGE2 acting on EP1 and EP4 receptors may prove to be important mediators of PT injury, and salt and water transport.


Assuntos
Dinoprostona/farmacologia , Túbulos Renais Proximais/fisiologia , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Reabsorção Renal/efeitos dos fármacos , Acridinas , Análise de Variância , Animais , Western Blotting , Compostos Bicíclicos com Pontes/farmacologia , Caproatos/farmacologia , Ciclina D1/metabolismo , Ciclina E/metabolismo , Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Receptores de Prostaglandina E Subtipo EP1/agonistas , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia
8.
Am J Physiol Renal Physiol ; 307(3): F243-50, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24966087

RESUMO

Chronic kidney disease is a leading cause of morbidity and mortality in the world. A better understanding of disease mechanisms has been gained in recent years, but the current management strategies are ineffective at preventing disease progression. A widespread focus of research is placed on elucidating the specific processes implicated to find more effective therapeutic options. PGE2, acting on its four EP receptors, regulates many renal disease processes; thus EP receptors could prove to be important targets for kidney disease intervention strategies. This review summarizes the major pathogenic mechanisms contributing to initiation and progression of chronic kidney disease, emphasizing the role of hyperglycemia, hypertension, inflammation, and oxidative stress. We have long recognized the multifaceted role of PGs in both the initiation and progression of chronic kidney disease, yet studies are only now seriously contemplating specific EP receptors as targets for therapy. Given the plethora of renal complications attributed to PG involvement in the kidney, this review highlights these pathogenic events and emphasizes the PGE2 receptor targets as options available to complement current therapeutic strategies.


Assuntos
Progressão da Doença , Receptores de Prostaglandina E/fisiologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Humanos , Hiperglicemia/fisiopatologia , Hipertensão/fisiopatologia , Inflamação/fisiopatologia , Estresse Oxidativo/fisiologia
9.
Am J Pathol ; 183(6): 1789-1802, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113456

RESUMO

We hypothesized that the EP1 receptor promotes renal damage in diabetic nephropathy. We rendered EP1 (PTGER1, official symbol) knockout mice (EP1(-/-)) diabetic using the streptozotocin and OVE26 models. Albuminuria, mesangial matrix expansion, and glomerular hypertrophy were each blunted in EP1(-/-) streptozotocin and OVE26 cohorts compared with wild-type counterparts. Although diabetes-associated podocyte depletion was unaffected by EP1 deletion, EP1 antagonism with ONO-8711 in cultured podocytes decreased angiotensin II-mediated superoxide generation, suggesting that EP1-associated injury of remaining podocytes in vivo could contribute to filtration barrier dysfunction. Accordingly, EP1 deletion in OVE26 mice prevented nephrin mRNA expression down-regulation and ameliorated glomerular basement membrane thickening and foot process effacement. Moreover, EP1 deletion reduced diabetes-induced expression of fibrotic markers fibronectin and α-actin, whereas EP1 antagonism decreased fibronectin in cultured proximal tubule cells. Similarly, proximal tubule megalin expression was reduced by diabetes but was preserved in EP1(-/-) mice. Finally, the diabetes-associated increase in angiotensin II-mediated constriction of isolated mesenteric arteries was blunted in OVE26EP1(-/-) mice, demonstrating a role for EP1 receptors in the diabetic vasculature. These data suggest that EP1 activation contributes to diabetic nephropathy progression at several locations, including podocytes, proximal tubule, and the vasculature. The EP1 receptor facilitates the actions of angiotensin II, thereby suggesting that targeting of both the renin-angiotensin system and the EP1 receptor could be beneficial in diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Deleção de Genes , Receptores de Prostaglandina E Subtipo EP1 , Actinas/biossíntese , Actinas/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Compostos Bicíclicos com Pontes/farmacologia , Caproatos/farmacologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibronectinas/biossíntese , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/patologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos Knockout , Receptores de Prostaglandina E Subtipo EP1/genética , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética , Superóxidos/metabolismo , Vasoconstrição/efeitos dos fármacos
10.
J Am Soc Nephrol ; 24(10): 1512-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23970124

RESUMO

Reactive oxygen species (ROS) play an important role in normal cellular physiology. They regulate different biologic processes such as cell defense, hormone synthesis and signaling, activation of G protein-coupled receptors, and ion channels and kinases/phosphatases. ROS are also important regulators of transcription factors and gene expression. On the other hand, in pathologic conditions, a surplus of ROS in tissue results in oxidative stress with various injurious consequences such as inflammation and fibrosis. NADPH oxidases are one of the many sources of ROS in biologic systems, and there are seven isoforms (Nox1-5, Duox1, Duox2). Nox4 is the predominant form in the kidney, although Nox2 is also expressed. Nox4 has been implicated in the basal production of ROS in the kidney and in pathologic conditions such as diabetic nephropathy and CKD; upregulation of Nox4 may be important in renal oxidative stress and kidney injury. Although there is growing evidence indicating the involvement of NADPH oxidase in renal pathology, there is a paucity of information on the role of NADPH oxidase in the regulation of normal renal function. Here we provide an update on the role of NADPH oxidases and ROS in renal physiology and pathology.


Assuntos
Rim/enzimologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/enzimologia , Nefropatias/metabolismo , Nefropatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA