Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Bioanal Chem ; 412(23): 5759-5777, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681223

RESUMO

Volatile organic compounds (VOCs) and semi-VOCs detected on the human skin surface are of great interest to researchers in the fields of metabolomics, diagnostics, and skin microbiota and in the study of anthropophilic vector mosquitoes. Mosquitoes use chemical cues to find their host, and humans can be ranked for attractiveness to mosquitoes based on their skin chemical profile. Additionally, mosquitoes show a preference to bite certain regions on the human host. In this study, the chemical differences in the skin surface profiles of 20 human volunteers were compared based on inter-human attractiveness to mosquitoes, as well as inter- and intra-human mosquito biting site preference. A passive, non-invasive approach was followed to sample the wrist and ankle skin surface region. An in-house developed polydimethylsiloxane (PDMS) passive sampler was used to concentrate skin VOCs and semi-VOCs prior to thermal desorption directly in the GC inlet with comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). Compounds from a broad range of chemical classes were detected and identified as contributing to the differences in the surface skin chemical profiles. 5-Ethyl-1,2,3,4-tetrahydronaphthalene, 1,1'-oxybisoctane, 2-(dodecyloxy)ethanol, α,α-dimethylbenzene methanol, methyl salicylate, 2,6,10,14-tetramethylhexadecane, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, 4-methylbenzaldehyde, 2,6-diisopropylnaphthalene, n-hexadecanoic acid, and γ-oxobenzenebutanoic acid ethyl ester were closely associated with individuals who perceived themselves as attractive for mosquitoes. Additionally, biological lead compounds as potential attractants or repellants in vector control strategies were tentatively identified. Results augment current knowledge on human skin chemical profiles and show the potential of using a non-invasive sampling approach to investigate anthropophilic mosquito-host interactions. Graphical abstract.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores , Pele/química , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Compostos Orgânicos Voláteis/análise
2.
J Sep Sci ; 43(22): 4202-4215, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902131

RESUMO

Variation in inter-human attractiveness to mosquitoes, and the preference of mosquitoes to bite certain regions on the human host, are possible avenues for identifying lead compounds as potential mosquito attractants or repellents. We report a practical, non-invasive method for the separation and detection of skin surface chemical compounds and comparison of skin chemical profiles between the ankle and wrist skin surface area sampled over a 5-day period of a human volunteer using comprehensive gas chromatography coupled to time-of-flight mass spectrometry. An in-house made polydimethylsiloxane passive mini-sampler, worn as an anklet or a bracelet, was used to concentrate skin volatiles and semi-volatiles prior to thermal desorption directly in the gas chromatography. A novel method for the addition of an internal standard to sorptive samplers was introduced through solvent modification. This approach enabled a more reliable comparison of human skin surface chemical profiles. Compounds that were closely associated with the wrist included 6-methyl-1-heptanol, 3-(4-isopropylphenyl)-2-methylpropionaldehyde, 2-phenoxyethyl isobutyrate, and 2,4,6-trimethyl-pyridine. Conversely, compounds only detected on the ankle region included 2-butoxyethanol phosphate, 2-heptanone, and p-menthan-8-ol. In addition to known human skin compounds we report two compounds, carvone and (E)-2-decenal, not previously reported. Limits of detection ranged from 1 pg (carvone) to 362 pg (indole).


Assuntos
Interações Hospedeiro-Parasita , Mordeduras e Picadas de Insetos , Pele/química , Compostos Orgânicos Voláteis/análise , Adsorção , Animais , Culicidae , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Tamanho da Partícula , Propriedades de Superfície
3.
J Mass Spectrom ; 59(1): e4992, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108549

RESUMO

High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.


Assuntos
Culicidae , Mosquitos Vetores , Animais , Humanos , Pele , Aminoácidos , Espectrometria de Mobilidade Iônica
4.
Artigo em Inglês | MEDLINE | ID: mdl-37995549

RESUMO

Tuberculosis (TB) remains a global health concern. This study aimed to investigate the potential of human skin volatile organic compounds (VOCs) as prospective biomarkers for TB diagnosis. It employed a non-invasive approach using a wearable silicone rubber band for VOC sampling, comprehensive gas chromatography - time of flight mass spectrometry (GCxGC-TOFMS), and chemometric techniques. Both targeted and untargeted biochemical screening was utilized to explore biochemical differences between healthy individuals and those with TB infection. Results confirmed a correlation between compounds found in this study, and those reported for TB from other biofluids. In a comparison to known TB-associated compounds from other biofluids our analysis established the presence of 27 of these compounds emanating from human skin. Additionally, 16 previously unreported compounds were found as potential biomarkers. The diagnostic ability of the VOCs selected by statistical methods was investigated using predictive modelling techniques. Artificial neural network multi-layered perceptron (ANN) yielded two compounds, 1H-indene, 2,3 dihydro-1,1,3-trimethyl-3-phenyl; and heptane-3-ethyl-2-methyl, as the most discriminatory, and could differentiate between TB-positive (n = 15) and TB-negative (n = 23) individuals with an area under the receiver operating characteristic curve (AUROC) of 92 %, a sensitivity of 100 % and a specificity of 94 % for six targeted features. For untargeted analysis, ANN assigned 3-methylhexane as the most discriminatory between TB-positive and TB- negative individuals. An AUROC of 98.5 %, a sensitivity of 83 %, and a specificity of 88 % were obtained for 16 untargeted features as chosen by high performance variable selection. The obtained values compare highly favourable to alternative diagnostic methods such as breath analysis and GeneXpert. Consequently, human skin VOCs hold considerable potential as a TB diagnostic screening test.


Assuntos
Tuberculose , Compostos Orgânicos Voláteis , Humanos , Tuberculose/diagnóstico , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pele/química , Compostos Orgânicos Voláteis/análise , Biomarcadores
5.
J Mass Spectrom ; 56(2): e4686, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33462985

RESUMO

Human skin surface chemical cues comprise a complex mixture of compounds that mosquitoes use to locate and select their human host, based on inter- and intra-human variation in chemical profiles. The complexity of the skin surface matrix calls for advanced analytical techniques to enable separation and identification of biomarkers, which may be used as topical attractants and repellants in future mosquito vector control programmes. The perceived mosquito attractiveness between 20 volunteers and the preference of mosquitoes to bite certain regions, namely, ankle versus wrist, of the human host were investigated in this study, by comparing skin surface chemical profiles. Ion mobility was combined with high resolution mass spectrometry to provide additional confidence in biological marker discovery and identification of human skin surface compounds. This study employed a non-intrusive sampling scheme using a polydimethylsiloxane (PDMS) sampler and solvent desorption analysed with ultra-performance liquid chromatography with ion mobility high-resolution mass spectrometry (UPLC-IMS-HRMS). Statistical approaches guided the identification of 14 biological markers discerning difference in perceived mosquito attractiveness and 20 biomarkers associated with the different skin regions sampled. A broad range (m/z 96.0437 to 788.6095) of chemical compounds was detected from a variety of classes (including sugars, steroids, fatty acids, peptides and peptide derivatives, and compounds of food origin). Ten compounds were unequivocally identified on the human skin surface, and caffeine was reported on the human skin surface for the first time. Furthermore, 77 compounds, of which 64 to the authors' knowledge have not previously been reported, were detected on the human skin surface using accurate mass, collision cross section (CCS) values and fragmentation patterns. This approach enabled comprehensive human skin surface chemical profiling and provides an extensive list of tentatively identified skin surface compounds together with accurate mass values and adducts with their corresponding CCS values.


Assuntos
Biomarcadores/análise , Espectrometria de Massas/métodos , Pele/química , Adulto , Animais , Biomarcadores/química , Cromatografia Líquida de Alta Pressão , Humanos , Pessoa de Meia-Idade , Controle de Mosquitos , Mosquitos Vetores , Pele/anatomia & histologia , Adulto Jovem
6.
Parasit Vectors ; 13(1): 80, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066499

RESUMO

The use of semiochemicals in odour-based traps for surveillance and control of vector mosquitoes is deemed a new and viable component for integrated vector management programmes. Over 114 semiochemicals have been identified, yet implementation of these for management of infectious diseases such as malaria, dengue, chikungunya and Rift Valley fever is still a major challenge. The difficulties arise due to variation in how different mosquito species respond to not only single chemical compounds but also complex chemical blends. Additionally, mosquitoes respond to different volatile blends when they are looking for a mating partner, oviposition sites or a meal. Analytically the challenge lies not only in correctly identifying these semiochemical signals and cues but also in developing formulations that effectively mimic blend ratios that different mosquito species respond to. Only then can the formulations be used to enhance the selectivity and efficacy of odour-based traps. Understanding how mosquitoes use semiochemical cues and signals to survive may be key to unravelling these complex interactions. An overview of the current studies of these chemical messages and the chemical ecology involved in complex behavioural patterns is given. This includes an updated list of the semiochemicals which can be used for integrated vector control management programmes. A thorough understanding of these semiochemical cues is of importance for the development of new vector control methods that can be integrated into established control strategies.


Assuntos
Controle de Mosquitos/métodos , Mosquitos Vetores , Feromônios , Aedes , Animais , Anopheles , Culex , Feminino , Odorantes
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1097-1098: 83-93, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212730

RESUMO

Volatile organic compounds (VOCs) emanating from the surfaces of human skin are of great interest to researchers in medical and forensic fields, as well as to biologists studying the ecology of blood-feeding insect vectors of human disease. Research involving the comparison of relative abundances of VOCs emanating from human skin is currently limited by the methodology used for sample collection and pre-concentration. The use of in-house developed silicone rubber (polydimethylsiloxane (PDMS)) passive sampling devices constructed in the form of bracelets and anklets was explored to address this need. The easy-to-use samplers were employed as non-invasive passive sampling devices for the non-targeted collection and concentration of volatile human skin emissions prior to thermal desorption thereof coupled with comprehensive gas chromatographic time-of-flight mass spectrometric (GC × GC-TOFMS) analysis. Compounds collected were from a wide range of compound classes. Several compounds, notably cyclic ketones, identified have not been previously reported in skin volatile literature. Comparison of normalized unique mass peak area signals has revealed relative quantitative differences and similarities between the samples collected from two individuals' wrists and as well as between an individual's wrist and ankle. The sampling method was evaluated based on its ability to provide many candidate compounds for potential biomarker discovery. The results show the ability of the new sampling method for augmenting the current knowledge on human skin volatile emissions. The samplers are both easy to use and economical. Applications explored include the study of the complex relationships between the human skin microbiome and the attractiveness of individuals to anthropophilic blood host seeking mosquitoes.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Microbiota/fisiologia , Mosquitos Vetores/fisiologia , Fenômenos Fisiológicos da Pele , Pele/química , Compostos Orgânicos Voláteis/análise , Adulto , Humanos , Masculino , Adulto Jovem
8.
J Chromatogr A ; 1496: 122-132, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28365075

RESUMO

Many rural dwellers and inhabitants of informal settlements in South Africa are without access to treated water and collect untreated water from rivers and dams for personal use. Endocrine disrupting chemicals (EDCs) have been detected in surface water and wildlife of South Africa. EDCs are often present in complex environmental matrices at ultra-trace levels complicating detection thereof. We report a simplified multi-residue approach for the detection and quantification of EDCs, emerging EDCs, and antiretroviral drugs in surface water. A low cost (less than one US dollar), disposable, sorptive extraction sampler was prepared in-house. The disposable samplers consisted of polydimethylsiloxane (PDMS) tubing fashioned into a loop which was then placed in water samples to concentrate EDCs and emerging pollutants. The PDMS samplers were thermally desorbed directly in the inlet of a GC, thereby eliminating the need for expensive consumable cryogenics. Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for compound separation and identification. Linear retention indices of EDCs and emerging pollutants were determined on a proprietary Crossbond® phase Rtx®-CLPesticides II GC capillary column. In addition, large volume injection of surface water into an ultra-performance liquid chromatograph tandem mass spectrometer (UPLC-MS/MS) was used as complementary methodology for the detection of less volatile compounds. Large volume injection reduced tedious and costly sample preparation steps. Limits of detection for the GC method ranged from 1 to 98pg/l and for the LC method from 2 to 135ng/l. Known and emerging EDCs such as pharmaceuticals, personal care products and pesticides, as well as the antiretroviral compounds, efavirenz and nevirapine, were detected in surface water from South Africa at concentration levels ranging from 0.16ng/l to 227ng/l.


Assuntos
Antirretrovirais/análise , Cromatografia Líquida de Alta Pressão , Disruptores Endócrinos/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Alcinos , Benzoxazinas/análise , Ciclopropanos , Limite de Detecção , Nevirapina/análise
9.
Anal Chim Acta ; 984: 107-115, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843553

RESUMO

The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L-1 to 0.19 ng L-1. For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%.

10.
J Chromatogr A ; 1271(1): 176-80, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23219481

RESUMO

Pinotage wine from several South African wine cellars has been produced with a novel coffee flavour. We have investigated this innovative coffee effect using in house developed solventless sampling and fractionating olfactometric techniques, which are unique in their ability to study synergistic aroma effects as opposed to traditional gas chromatography olfactometry (GC-O) which is designed to, ideally, evaluate single eluting compounds in a chromatographic sequence. Sections of the chromatogram, multiple or single peaks, were recaptured on multichannel open tubular silicone rubber (polydimethylsiloxane (PDMS)) traps at the end of a GC column. The recaptured fractions were released in a controlled manner for offline olfactory evaluation, and for qualitative analysis using comprehensive gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS) for compound separation and identification, thus permitting correlation of odour with specific compounds. A combination of furfural and 2-furanmethanol was responsible for a roast coffee bean-like odour in coffee style Pinotage wines. This coffee perception is the result of a synergistic effect in which no individual compound was responsible for the characteristic aroma.


Assuntos
Café/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Vinho/análise , Adsorção , Dimetilpolisiloxanos/química
11.
Anal Chim Acta ; 730: 112-9, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22632052

RESUMO

The organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control in certain areas of South Africa. The strict Stockholm Convention on Persistent Organic Pollutants (POPs) allows spraying on the inside of traditional dwellings with DDT. In rural villages contaminated dust presents an additional pathway for exposure to DDT. We present a new method for the determination of DDT in indoor air where separate vapour and particulate samples are collected in a single step with a denuder configuration of a multi-channel open tubular silicone rubber (polydimethylsiloxane (PDMS)) trap combined with a micro quartz fibre filter. The multi-channel PDMS trap section of the denuder concentrates vapour phase insecticide whereas particle associated insecticide is transferred downstream where it is collected on a micro-fibre filter followed by a second multi-channel PDMS trap to capture the blow-off from the filter. The multi-channel PDMS trap and filter combination are designed to fit a commercial thermal desorber for direct introduction of samples into a GC-MS. The technique is solvent-free. Analyte extraction and sample clean-up is not required. Two fractions, vapour phase and particulate phase p,p'-DDT, o,p'-DDT; p,p'-DDD, o,p'-DDD; p,p'-DDE and o,p'-DDE in 4 L contaminated indoor air, were each quantitatively analysed by GC-MS using isotopically labelled ring substituted (13)C(12) -p,p'-DDT as an internal standard. Limits of detection were 0.07-0.35 ng m(-3) for p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE and o,p'-DDE. Ratios of airborne p,p'-DDD/p,p'-DDT and of o,p'-DDT/p,p'-DDT are unusual and do not match the ideal certified ingredient composition required of commercial DDT. Results suggest that the DDT products used for indoor residual spraying (IRS) prior to, and during 2007, may have been compromised with regards to insecticidal efficacy, demonstrating the power of this new environmental forensics tool.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , DDT/análise , Inseticidas/análise , Malária/prevenção & controle , Absorção , DDT/análogos & derivados , Diclorodifenil Dicloroetileno/análise , Diclorodifenildicloroetano/análise , Dimetilpolisiloxanos/química , Poeira/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , África do Sul , Volatilização
12.
Anal Chim Acta ; 730: 120-6, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22632053

RESUMO

In rural parts of South Africa the organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control where traditional dwellings are sprayed on the inside with small quantities of technical DDT. Since o,p'-DDT may show enantioselective oestrogenicity and biodegradability, it is important to analyse enantiomers of o,p'-DDT and its chiral degradation product, o,p'-DDD, for both health and environmental-forensic considerations. Generally, chiral analysis is performed using heart-cut multidimensional gas chromatography (MDGC) and, more recently, comprehensive two-dimensional gas chromatography (GC×GC). We developed an off-line gas chromatographic fraction collection (heart-cut) procedure for the selective capturing of the appropriate isomers from a first apolar column, followed by reinjection and separation on a second chiral column. Only the o,p'-isomers of DDT and DDD fractions from the first dimension complex chromatogram (achiral apolar GC column separation) were selectively collected onto a polydimethylsiloxane (PDMS) multichannel open tubular silicone rubber trap by simply placing the latter device on the flame tip of an inactivated flame ionisation detector (FID). The multichannel trap containing the o,p'-heart-cuts was then thermally desorbed into a GC with time-of-flight mass spectrometry detection (GC-TOFMS) for second dimension enantioselective separation on a chiral column (ß-cyclodextrin-based). By selectively capturing only the o,p'-isomers from the complex sample chromatogram, (1)D separation of ultra-trace level enantiomers could be achieved on the second chiral column without matrix interference. Here, we present solventless concentration techniques for extraction of DDT from contaminated soil and air, and report enantiomeric fraction (EF) values of o,p'-DDT and o,p'-DDD obtained by a new multidimensional approach for heart-cut gas chromatographic fraction collection for off-line second dimension enantiomeric separation by (1)D GC-TOFMS of selected isomers. This multidimensional method is compared to the complementary technique of comprehensive GC×GC-TOFMS using the same enantioselective column, this time as the first dimension of separation.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , DDT/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mitotano/análise , Poluentes do Solo/análise , Dimetilpolisiloxanos/química , Monitoramento Ambiental/métodos , Humanos , Malária/prevenção & controle , África do Sul , Estereoisomerismo , beta-Ciclodextrinas/química
13.
J Chromatogr A ; 1216(14): 2798-804, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18929368

RESUMO

A headspace sampling method is described for concentrating milk volatiles onto a multi-channel open tubular silicone rubber trap (MCT) for thermal desorption into a GC-FID. Sections of the chromatographic profile, single peaks or combinations of compounds are recaptured with secondary MCTs during a subsequent run. The recaptured aroma is released in a controlled manner by heating the MCT in a portable heating device. An aroma release window of several minutes allows up to six people the opportunity to sniff each aroma fraction more than once. Olfactory results suggest that a synergistic combination of 2-heptanone and 2-nonanone could be responsible for a pungent cheese, sour milk-like aroma. MCTs containing single components or fractions can be desorbed into a GC-MS for compound identification.


Assuntos
Fracionamento Químico/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cetonas/isolamento & purificação , Leite/química , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Odorantes/análise , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA