Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Heart J ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150906

RESUMO

BACKGROUND AND AIMS: Glycoprotein VI (GPVI) is a platelet collagen/fibrin(ogen) receptor and an emerging pharmacological target for the treatment of thrombotic and thrombo-inflammatory diseases, notably ischaemic stroke. A first anti-human GPVI (hGPVI) antibody Fab-fragment (ACT017/glenzocimab, KD: 4.1 nM) recently passed a clinical phase 1b/2a study in patients with acute ischaemic stroke and was found to be well tolerated, safe, and potentially beneficial. In this study, a novel humanized anti-GPVI antibody Fab-fragment (EMA601; KD: 0.195 nM) was developed that inhibits hGPVI function with very high potency in vitro and in vivo. METHODS: Fab-fragments of the mouse anti-hGPVI IgG Emf6.1 were tested for functional GPVI inhibition in human platelets and in hGPVI expressing (hGP6tg/tg) mouse platelets. The in vivo effect of Emf6.1Fab was assessed in a tail bleeding assay, an arterial thrombosis model and the transient middle cerebral artery occlusion (tMCAO) model of ischaemic stroke. Using complementary-determining region grafting, a humanized version of Emf6.1Fab (EMA601) was generated. Emf6.1Fab/EMA601 interaction with hGPVI was mapped in array format and kinetics and quantified by bio-layer interferometry. RESULTS: Emf6.1Fab (KD: 0.427 nM) blocked GPVI function in human and hGP6tg/tg mouse platelets in multiple assays in vitro at concentrations ≥5 µg/mL. Emf6.1Fab (4 mg/kg)-treated hGP6tg/tg mice showed potent hGPVI inhibition ex vivo and were profoundly protected from arterial thrombosis as well as from cerebral infarct growth after tMCAO, whereas tail-bleeding times remained unaffected. Emf6.1Fab binds to a so far undescribed membrane proximal epitope in GPVI. The humanized variant EMA601 displayed further increased affinity for hGPVI (KD: 0.195 nM) and fully inhibited the receptor at 0.5 µg/mL, corresponding to a >50-fold potency compared with ACT017. CONCLUSIONS: EMA601 is a conceptually novel and promising anti-platelet agent to efficiently prevent or treat arterial thrombosis and thrombo-inflammatory pathologies in humans at risk.

2.
Arch Biochem Biophys ; 754: 109944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395124

RESUMO

The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the GPVI/FcRγ-containing SMALPs, to enable structural insights into the full-length GPVI/FcRγ complex. Using size exclusion chromatography followed by a native polyacrylamide gel electrophoresis (PAGE) method, SMA-PAGE, we revealed multiple sizes of the purified GPVI/FcRγ SMALPs, suggesting the potential existence of GPVI oligomers. Importantly, GPVI/FcRγ SMALPs were functional as they could bind collagen. Mono-dispersed GPVI/FcRγ SMALPs could be observed under negative stain electron microscopy. These results pave the way for the future investigation of GPVI stoichiometry and structure, while also validating SMALPs as a promising tool for the investigation of human membrane protein interactions, stoichiometry and structure.


Assuntos
Plaquetas , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Colágeno/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955743

RESUMO

Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.


Assuntos
Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Cães , Epitopos/metabolismo , Cobaias , Humanos , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Coelhos , Ratos
4.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008781

RESUMO

In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbß3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Colágeno/farmacologia , Tromboplastina/farmacologia , Trombose/patologia , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Fator VIIa/metabolismo , Fibrina/metabolismo , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Fatores de Tempo
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807278

RESUMO

Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype-phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.


Assuntos
Autofagia/genética , Doença de Depósito de Glicogênio Tipo II/genética , alfa-Glucosidases/genética , Adulto , Idoso , Autofagia/fisiologia , Terapia de Reposição de Enzimas/métodos , Família , Feminino , Variação Genética/genética , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Mutação , Linhagem , Músculos Respiratórios , Irmãos , alfa-Glucosidases/metabolismo
6.
Thromb Haemost ; 120(4): 538-564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32289858

RESUMO

Thrombo-inflammation describes the complex interplay between blood coagulation and inflammation that plays a critical role in cardiovascular diseases. The third Maastricht Consensus Conference on Thrombosis assembled basic, translational, and clinical scientists to discuss the origin and potential consequences of thrombo-inflammation in the etiology, diagnostics, and management of patients with cardiovascular disease, including myocardial infarction, stroke, and peripheral artery disease. This article presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following topics: (1) challenges of the endothelial cell barrier; (2) circulating cells and thrombo-inflammation, focused on platelets, neutrophils, and neutrophil extracellular traps; (3) procoagulant mechanisms; (4) arterial vascular changes in atherogenesis; attenuating atherosclerosis and ischemia/reperfusion injury; (5) management of patients with arterial vascular disease; and (6) pathogenesis of venous thrombosis and late consequences of venous thromboembolism.


Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Endotélio Vascular/fisiologia , Inflamação/imunologia , Neutrófilos/imunologia , Tromboembolia Venosa/imunologia , Animais , Aterosclerose/diagnóstico , Aterosclerose/terapia , Coagulação Sanguínea , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Prova Pericial , Humanos , Imunidade Inata , Trombose , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA